Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975479989> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2975479989 endingPage "112975" @default.
- W2975479989 startingPage "112975" @default.
- W2975479989 abstract "Abstract Wildfire detection is a time-critical application as the difficulty to pinpoint ignition locations in a short time-frame often leads to the escalation of the severity of fire events. This problem has motivated considerable interest from expert systems research to develop accurate early-warning applications and the breakthroughs in deep learning in complex visual understanding tasks open novel research opportunities. However, despite the improvements in performance demonstrated in the current literature, a comprehensive study of the challenges and limitations of this approach is still a gap in the state-of-the-art. To address this issue, the contributions of this work are threefold. First, we overview recent works to identify common difficulties and shortcomings of these approaches, and assess issues related to the quality of the databases. Second, to overcome data limitations, this work proposes a transfer learning approach coupled with data augmentation techniques tested under a tenfold cross-validation scheme. The proposed framework enables leveraging an open-source dataset featuring images from more than 35 real fire events, which unlike video-based works offers higher variability between samples, allowing evaluating the approach in an extensive set of real scenarios. Third, this article presents an in-depth study of the limitations, providing a comprehensive analysis of the patterns causing misclassifications. The key insights gained in this analysis provide relevant takeaways to guide future research towards the implementation of expert systems in decision support systems in firefighting and civil protection operations." @default.
- W2975479989 created "2019-10-03" @default.
- W2975479989 creator A5060331026 @default.
- W2975479989 creator A5081486282 @default.
- W2975479989 creator A5085343517 @default.
- W2975479989 date "2020-03-01" @default.
- W2975479989 modified "2023-10-17" @default.
- W2975479989 title "Wildfire detection using transfer learning on augmented datasets" @default.
- W2975479989 cites W1971256340 @default.
- W2975479989 cites W1981527205 @default.
- W2975479989 cites W1996199746 @default.
- W2975479989 cites W1998733631 @default.
- W2975479989 cites W2011160765 @default.
- W2975479989 cites W2101926813 @default.
- W2975479989 cites W2112796928 @default.
- W2975479989 cites W2117539524 @default.
- W2975479989 cites W2119605622 @default.
- W2975479989 cites W2141463923 @default.
- W2975479989 cites W2146926380 @default.
- W2975479989 cites W2158698691 @default.
- W2975479989 cites W2171201674 @default.
- W2975479989 cites W2527290311 @default.
- W2975479989 cites W2569436968 @default.
- W2975479989 cites W2593226270 @default.
- W2975479989 cites W2728330909 @default.
- W2975479989 cites W2733381601 @default.
- W2975479989 cites W2780222614 @default.
- W2975479989 cites W2919115771 @default.
- W2975479989 doi "https://doi.org/10.1016/j.eswa.2019.112975" @default.
- W2975479989 hasPublicationYear "2020" @default.
- W2975479989 type Work @default.
- W2975479989 sameAs 2975479989 @default.
- W2975479989 citedByCount "49" @default.
- W2975479989 countsByYear W29754799892020 @default.
- W2975479989 countsByYear W29754799892021 @default.
- W2975479989 countsByYear W29754799892022 @default.
- W2975479989 countsByYear W29754799892023 @default.
- W2975479989 crossrefType "journal-article" @default.
- W2975479989 hasAuthorship W2975479989A5060331026 @default.
- W2975479989 hasAuthorship W2975479989A5081486282 @default.
- W2975479989 hasAuthorship W2975479989A5085343517 @default.
- W2975479989 hasConcept C119857082 @default.
- W2975479989 hasConcept C150899416 @default.
- W2975479989 hasConcept C153180895 @default.
- W2975479989 hasConcept C154945302 @default.
- W2975479989 hasConcept C41008148 @default.
- W2975479989 hasConceptScore W2975479989C119857082 @default.
- W2975479989 hasConceptScore W2975479989C150899416 @default.
- W2975479989 hasConceptScore W2975479989C153180895 @default.
- W2975479989 hasConceptScore W2975479989C154945302 @default.
- W2975479989 hasConceptScore W2975479989C41008148 @default.
- W2975479989 hasFunder F4320334779 @default.
- W2975479989 hasLocation W29754799891 @default.
- W2975479989 hasOpenAccess W2975479989 @default.
- W2975479989 hasPrimaryLocation W29754799891 @default.
- W2975479989 hasRelatedWork W2960456850 @default.
- W2975479989 hasRelatedWork W3021430260 @default.
- W2975479989 hasRelatedWork W3133293092 @default.
- W2975479989 hasRelatedWork W4281382123 @default.
- W2975479989 hasRelatedWork W4281645081 @default.
- W2975479989 hasRelatedWork W4294306704 @default.
- W2975479989 hasRelatedWork W4308262314 @default.
- W2975479989 hasRelatedWork W4313050734 @default.
- W2975479989 hasRelatedWork W4318834068 @default.
- W2975479989 hasRelatedWork W4318957922 @default.
- W2975479989 hasVolume "142" @default.
- W2975479989 isParatext "false" @default.
- W2975479989 isRetracted "false" @default.
- W2975479989 magId "2975479989" @default.
- W2975479989 workType "article" @default.