Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975576859> ?p ?o ?g. }
- W2975576859 abstract "Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification." @default.
- W2975576859 created "2019-10-03" @default.
- W2975576859 creator A5016892586 @default.
- W2975576859 creator A5022173400 @default.
- W2975576859 creator A5055526924 @default.
- W2975576859 creator A5058216405 @default.
- W2975576859 creator A5063590181 @default.
- W2975576859 creator A5081395885 @default.
- W2975576859 date "2019-02-27" @default.
- W2975576859 modified "2023-09-23" @default.
- W2975576859 title "Induction Networks for Few-Shot Text Classification" @default.
- W2975576859 cites W1560724230 @default.
- W2975576859 cites W2115733720 @default.
- W2975576859 cites W2127426251 @default.
- W2975576859 cites W2146502635 @default.
- W2975576859 cites W2156387975 @default.
- W2975576859 cites W2162708558 @default.
- W2975576859 cites W2163302275 @default.
- W2975576859 cites W2187089797 @default.
- W2975576859 cites W2250539671 @default.
- W2975576859 cites W2597655663 @default.
- W2975576859 cites W2601450892 @default.
- W2975576859 cites W2604763608 @default.
- W2975576859 cites W2769992643 @default.
- W2975576859 cites W2770468159 @default.
- W2975576859 cites W2787501667 @default.
- W2975576859 cites W2792334966 @default.
- W2975576859 cites W2796346823 @default.
- W2975576859 cites W2889577585 @default.
- W2975576859 cites W2914312680 @default.
- W2975576859 cites W2948974578 @default.
- W2975576859 cites W2950361018 @default.
- W2975576859 cites W2951422922 @default.
- W2975576859 cites W2962853356 @default.
- W2975576859 cites W2962886257 @default.
- W2975576859 cites W2963053846 @default.
- W2975576859 cites W2963270153 @default.
- W2975576859 cites W2963341924 @default.
- W2975576859 cites W2963703618 @default.
- W2975576859 cites W2964071174 @default.
- W2975576859 cites W2964105864 @default.
- W2975576859 cites W2964316912 @default.
- W2975576859 cites W2966661 @default.
- W2975576859 cites W3098357269 @default.
- W2975576859 doi "https://doi.org/10.48550/arxiv.1902.10482" @default.
- W2975576859 hasPublicationYear "2019" @default.
- W2975576859 type Work @default.
- W2975576859 sameAs 2975576859 @default.
- W2975576859 citedByCount "12" @default.
- W2975576859 countsByYear W29755768592019 @default.
- W2975576859 countsByYear W29755768592020 @default.
- W2975576859 countsByYear W29755768592021 @default.
- W2975576859 countsByYear W29755768592022 @default.
- W2975576859 crossrefType "posted-content" @default.
- W2975576859 hasAuthorship W2975576859A5016892586 @default.
- W2975576859 hasAuthorship W2975576859A5022173400 @default.
- W2975576859 hasAuthorship W2975576859A5055526924 @default.
- W2975576859 hasAuthorship W2975576859A5058216405 @default.
- W2975576859 hasAuthorship W2975576859A5063590181 @default.
- W2975576859 hasAuthorship W2975576859A5081395885 @default.
- W2975576859 hasBestOaLocation W29755768591 @default.
- W2975576859 hasConcept C119857082 @default.
- W2975576859 hasConcept C124101348 @default.
- W2975576859 hasConcept C134306372 @default.
- W2975576859 hasConcept C154945302 @default.
- W2975576859 hasConcept C162324750 @default.
- W2975576859 hasConcept C177148314 @default.
- W2975576859 hasConcept C177264268 @default.
- W2975576859 hasConcept C17744445 @default.
- W2975576859 hasConcept C178790620 @default.
- W2975576859 hasConcept C185592680 @default.
- W2975576859 hasConcept C187736073 @default.
- W2975576859 hasConcept C198531522 @default.
- W2975576859 hasConcept C199360897 @default.
- W2975576859 hasConcept C199539241 @default.
- W2975576859 hasConcept C204321447 @default.
- W2975576859 hasConcept C2776359362 @default.
- W2975576859 hasConcept C2777212361 @default.
- W2975576859 hasConcept C2778344882 @default.
- W2975576859 hasConcept C2780451532 @default.
- W2975576859 hasConcept C2781002164 @default.
- W2975576859 hasConcept C33923547 @default.
- W2975576859 hasConcept C41008148 @default.
- W2975576859 hasConcept C43617362 @default.
- W2975576859 hasConcept C51632099 @default.
- W2975576859 hasConcept C94625758 @default.
- W2975576859 hasConceptScore W2975576859C119857082 @default.
- W2975576859 hasConceptScore W2975576859C124101348 @default.
- W2975576859 hasConceptScore W2975576859C134306372 @default.
- W2975576859 hasConceptScore W2975576859C154945302 @default.
- W2975576859 hasConceptScore W2975576859C162324750 @default.
- W2975576859 hasConceptScore W2975576859C177148314 @default.
- W2975576859 hasConceptScore W2975576859C177264268 @default.
- W2975576859 hasConceptScore W2975576859C17744445 @default.
- W2975576859 hasConceptScore W2975576859C178790620 @default.
- W2975576859 hasConceptScore W2975576859C185592680 @default.
- W2975576859 hasConceptScore W2975576859C187736073 @default.
- W2975576859 hasConceptScore W2975576859C198531522 @default.
- W2975576859 hasConceptScore W2975576859C199360897 @default.
- W2975576859 hasConceptScore W2975576859C199539241 @default.