Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975694412> ?p ?o ?g. }
- W2975694412 endingPage "289" @default.
- W2975694412 startingPage "289" @default.
- W2975694412 abstract "Large textual corpora are often represented by the document-term frequency matrix whose elements are the frequency of terms; however, this matrix has two problems: sparsity and high dimensionality. Four dimension reduction strategies are used to address these problems. Of the four strategies, unsupervised-feature transformation (UFT) is a popular and efficient strategy to map the terms to a new basis in the document-term frequency matrix. Although several UFT-based methods have been developed, fuzzy clustering has not been considered for dimensionality reduction. This research explores fuzzy clustering as a new UFT-based approach to create a lower-dimensional representation of documents. Performance of fuzzy clustering with and without using global term weighting methods is shown to exceed principal component analysis and singular value decomposition. This study also explores the effect of applying different fuzzifier values on fuzzy clustering for dimensionality reduction purpose." @default.
- W2975694412 created "2019-10-03" @default.
- W2975694412 creator A5010380816 @default.
- W2975694412 date "2019-01-01" @default.
- W2975694412 modified "2023-10-17" @default.
- W2975694412 title "Application of fuzzy clustering for text data dimensionality reduction" @default.
- W2975694412 cites W140777655 @default.
- W2975694412 cites W1541288193 @default.
- W2975694412 cites W1654879277 @default.
- W2975694412 cites W1659702034 @default.
- W2975694412 cites W1768086793 @default.
- W2975694412 cites W1790954942 @default.
- W2975694412 cites W1845661282 @default.
- W2975694412 cites W1902027874 @default.
- W2975694412 cites W1904543801 @default.
- W2975694412 cites W1967165005 @default.
- W2975694412 cites W1984932897 @default.
- W2975694412 cites W1996747841 @default.
- W2975694412 cites W2001141328 @default.
- W2975694412 cites W2041280856 @default.
- W2975694412 cites W2071664212 @default.
- W2975694412 cites W2075312775 @default.
- W2975694412 cites W2076556084 @default.
- W2975694412 cites W2077776048 @default.
- W2975694412 cites W2086876270 @default.
- W2975694412 cites W2099322651 @default.
- W2975694412 cites W2100495367 @default.
- W2975694412 cites W2107714695 @default.
- W2975694412 cites W2111119584 @default.
- W2975694412 cites W2113076747 @default.
- W2975694412 cites W2121853761 @default.
- W2975694412 cites W2128728535 @default.
- W2975694412 cites W2129018774 @default.
- W2975694412 cites W2133138357 @default.
- W2975694412 cites W2133990480 @default.
- W2975694412 cites W2140095548 @default.
- W2975694412 cites W2142827986 @default.
- W2975694412 cites W2147152072 @default.
- W2975694412 cites W2149620660 @default.
- W2975694412 cites W2149761423 @default.
- W2975694412 cites W2150376021 @default.
- W2975694412 cites W2150796457 @default.
- W2975694412 cites W2152311353 @default.
- W2975694412 cites W2156718197 @default.
- W2975694412 cites W2158903965 @default.
- W2975694412 cites W2162364423 @default.
- W2975694412 cites W2167638481 @default.
- W2975694412 cites W2168287352 @default.
- W2975694412 cites W2168523997 @default.
- W2975694412 cites W2168761589 @default.
- W2975694412 cites W2192479274 @default.
- W2975694412 cites W2232538186 @default.
- W2975694412 cites W2238545866 @default.
- W2975694412 cites W2251811227 @default.
- W2975694412 cites W2265659089 @default.
- W2975694412 cites W2277957941 @default.
- W2975694412 cites W2293628378 @default.
- W2975694412 cites W2435251607 @default.
- W2975694412 cites W2610222147 @default.
- W2975694412 cites W2737679204 @default.
- W2975694412 cites W2763148304 @default.
- W2975694412 cites W2807573217 @default.
- W2975694412 cites W2884503196 @default.
- W2975694412 cites W2888812869 @default.
- W2975694412 cites W2888926673 @default.
- W2975694412 cites W2889075974 @default.
- W2975694412 cites W2897098357 @default.
- W2975694412 cites W2904531814 @default.
- W2975694412 cites W2913115244 @default.
- W2975694412 cites W2913713696 @default.
- W2975694412 cites W2936513683 @default.
- W2975694412 cites W2950256799 @default.
- W2975694412 cites W2962897494 @default.
- W2975694412 cites W2964156584 @default.
- W2975694412 cites W2964164182 @default.
- W2975694412 cites W2964305004 @default.
- W2975694412 cites W2970452922 @default.
- W2975694412 cites W3102322020 @default.
- W2975694412 cites W2522814126 @default.
- W2975694412 cites W99026443 @default.
- W2975694412 doi "https://doi.org/10.1504/ijkedm.2019.102487" @default.
- W2975694412 hasPublicationYear "2019" @default.
- W2975694412 type Work @default.
- W2975694412 sameAs 2975694412 @default.
- W2975694412 citedByCount "7" @default.
- W2975694412 countsByYear W29756944122020 @default.
- W2975694412 countsByYear W29756944122021 @default.
- W2975694412 countsByYear W29756944122022 @default.
- W2975694412 crossrefType "journal-article" @default.
- W2975694412 hasAuthorship W2975694412A5010380816 @default.
- W2975694412 hasBestOaLocation W29756944122 @default.
- W2975694412 hasConcept C121332964 @default.
- W2975694412 hasConcept C124101348 @default.
- W2975694412 hasConcept C153180895 @default.
- W2975694412 hasConcept C154945302 @default.
- W2975694412 hasConcept C17212007 @default.
- W2975694412 hasConcept C183115368 @default.
- W2975694412 hasConcept C22789450 @default.