Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975842227> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2975842227 abstract "Recognizing Textual Entailment is a fundamental task of natural language processing, and its purpose is to recognize the inferential relationship between two sentences. With the development of deep learning and construction of relevant corpus, great progress has been made in English Textual Entailment. However, the progress in Chinese Textual Entailment is relatively rare because of the lack of large-scale annotated corpus. The Seventeenth China National Conference on Computational Linguistics (CCL 2018) first released a Chinese textual entailment dataset that including 100,000 sentence pairs, which provides support for application of deep learning model. Inspired by attention models on English, we proposed a Chinese recognizing textual entailment model based on co-attention and aggregation. This model uses co-attention to calculate the feature of relationship between two sentences, and aggregates this feature with another feature obtained from sentences. Our model achieved 93.5% accuracy on CCL2018 textual entailment dataset, which is higher than the first place in previous evaluations. Experimental results showed that recognition of contradiction relations is difficult, but our model outperforms other benchmark models. What’s more, our model can be applied to Chinese document based question answer (DBQA). The accuracy of the experiment results on the dataset of NLPCC2016 is 72.3%." @default.
- W2975842227 created "2019-10-03" @default.
- W2975842227 creator A5062969664 @default.
- W2975842227 creator A5082499439 @default.
- W2975842227 creator A5083881203 @default.
- W2975842227 date "2019-01-01" @default.
- W2975842227 modified "2023-09-23" @default.
- W2975842227 title "Co-attention and Aggregation Based Chinese Recognizing Textual Entailment Model" @default.
- W2975842227 cites W1840435438 @default.
- W2975842227 cites W2006647942 @default.
- W2975842227 cites W2130158090 @default.
- W2975842227 cites W2413794162 @default.
- W2975842227 cites W2608787653 @default.
- W2975842227 cites W2808308446 @default.
- W2975842227 cites W2963077723 @default.
- W2975842227 cites W2963270153 @default.
- W2975842227 cites W2963846996 @default.
- W2975842227 cites W2963918774 @default.
- W2975842227 cites W2964082993 @default.
- W2975842227 cites W2964301648 @default.
- W2975842227 cites W4211148418 @default.
- W2975842227 doi "https://doi.org/10.1007/978-3-030-32236-6_11" @default.
- W2975842227 hasPublicationYear "2019" @default.
- W2975842227 type Work @default.
- W2975842227 sameAs 2975842227 @default.
- W2975842227 citedByCount "2" @default.
- W2975842227 countsByYear W29758422272020 @default.
- W2975842227 crossrefType "book-chapter" @default.
- W2975842227 hasAuthorship W2975842227A5062969664 @default.
- W2975842227 hasAuthorship W2975842227A5082499439 @default.
- W2975842227 hasAuthorship W2975842227A5083881203 @default.
- W2975842227 hasConcept C108583219 @default.
- W2975842227 hasConcept C13280743 @default.
- W2975842227 hasConcept C134752490 @default.
- W2975842227 hasConcept C138885662 @default.
- W2975842227 hasConcept C154945302 @default.
- W2975842227 hasConcept C185798385 @default.
- W2975842227 hasConcept C204321447 @default.
- W2975842227 hasConcept C205649164 @default.
- W2975842227 hasConcept C2776401178 @default.
- W2975842227 hasConcept C2776728590 @default.
- W2975842227 hasConcept C2777530160 @default.
- W2975842227 hasConcept C41008148 @default.
- W2975842227 hasConcept C41895202 @default.
- W2975842227 hasConcept C95318506 @default.
- W2975842227 hasConceptScore W2975842227C108583219 @default.
- W2975842227 hasConceptScore W2975842227C13280743 @default.
- W2975842227 hasConceptScore W2975842227C134752490 @default.
- W2975842227 hasConceptScore W2975842227C138885662 @default.
- W2975842227 hasConceptScore W2975842227C154945302 @default.
- W2975842227 hasConceptScore W2975842227C185798385 @default.
- W2975842227 hasConceptScore W2975842227C204321447 @default.
- W2975842227 hasConceptScore W2975842227C205649164 @default.
- W2975842227 hasConceptScore W2975842227C2776401178 @default.
- W2975842227 hasConceptScore W2975842227C2776728590 @default.
- W2975842227 hasConceptScore W2975842227C2777530160 @default.
- W2975842227 hasConceptScore W2975842227C41008148 @default.
- W2975842227 hasConceptScore W2975842227C41895202 @default.
- W2975842227 hasConceptScore W2975842227C95318506 @default.
- W2975842227 hasLocation W29758422271 @default.
- W2975842227 hasOpenAccess W2975842227 @default.
- W2975842227 hasPrimaryLocation W29758422271 @default.
- W2975842227 hasRelatedWork W131127834 @default.
- W2975842227 hasRelatedWork W1514417784 @default.
- W2975842227 hasRelatedWork W1553238488 @default.
- W2975842227 hasRelatedWork W192785878 @default.
- W2975842227 hasRelatedWork W2009799797 @default.
- W2975842227 hasRelatedWork W2053800966 @default.
- W2975842227 hasRelatedWork W2121023129 @default.
- W2975842227 hasRelatedWork W2222491148 @default.
- W2975842227 hasRelatedWork W2296063830 @default.
- W2975842227 hasRelatedWork W2313153150 @default.
- W2975842227 hasRelatedWork W2331842745 @default.
- W2975842227 hasRelatedWork W2336426024 @default.
- W2975842227 hasRelatedWork W2385228184 @default.
- W2975842227 hasRelatedWork W2396598687 @default.
- W2975842227 hasRelatedWork W2409196475 @default.
- W2975842227 hasRelatedWork W2413305704 @default.
- W2975842227 hasRelatedWork W2481744157 @default.
- W2975842227 hasRelatedWork W2571919844 @default.
- W2975842227 hasRelatedWork W2886692536 @default.
- W2975842227 hasRelatedWork W2947884672 @default.
- W2975842227 isParatext "false" @default.
- W2975842227 isRetracted "false" @default.
- W2975842227 magId "2975842227" @default.
- W2975842227 workType "book-chapter" @default.