Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976157432> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2976157432 abstract "Accurate pipe material strength estimation is critical for the integrity and risk assessment of aging pipeline infrastructure systems. To predict the strength without interrupting the serviceability of the pipeline, inference methods are used through the relationship between the bulk yield tensile strength and surface material properties from nondestructive testing, such as chemical composition, microstructure images, and hardness testing. In order to make the best of information provided by multimodality surface measurements, Bayesian model averaging (BMA) method is used in this paper to integrate the information from various types of surface measurements for a more accurate bulk strength estimation. The models being considered are constructed by randomly combining the multimodality surface measurements and each case of linear combinations is included. The models considered are assessed by assigning different weights based on the posterior model probability. Markov Chain Monte Carlo sampling provides an effective way for numerically computing the marginal likelihoods, which are essential for obtaining the posterior model probabilities. To avoid the risk of overfitting, BMA is implemented to account for model uncertainty. The predictive performance of single model and BMA are compared by logarithmic scoring rule. The data collected from industry are used for demonstration and model predictive performance assessment. It is shown that the Bayesian model averaging approach can provide more reliable results in predicting the strength of the aging pipelines." @default.
- W2976157432 created "2019-10-03" @default.
- W2976157432 creator A5010479652 @default.
- W2976157432 creator A5086340757 @default.
- W2976157432 date "2019-09-22" @default.
- W2976157432 modified "2023-09-25" @default.
- W2976157432 title "Probabilistic Aging Pipe Strength Estimation Using Multimodality Information Fusion" @default.
- W2976157432 cites W1579303078 @default.
- W2976157432 cites W1603903339 @default.
- W2976157432 cites W1877880381 @default.
- W2976157432 cites W1990779154 @default.
- W2976157432 cites W2032751439 @default.
- W2976157432 cites W2109844396 @default.
- W2976157432 cites W2111051773 @default.
- W2976157432 cites W2158196600 @default.
- W2976157432 cites W2158840489 @default.
- W2976157432 cites W2307889689 @default.
- W2976157432 cites W2790959928 @default.
- W2976157432 doi "https://doi.org/10.36001/phmconf.2019.v11i1.817" @default.
- W2976157432 hasPublicationYear "2019" @default.
- W2976157432 type Work @default.
- W2976157432 sameAs 2976157432 @default.
- W2976157432 citedByCount "0" @default.
- W2976157432 crossrefType "journal-article" @default.
- W2976157432 hasAuthorship W2976157432A5010479652 @default.
- W2976157432 hasAuthorship W2976157432A5086340757 @default.
- W2976157432 hasBestOaLocation W29761574321 @default.
- W2976157432 hasConcept C107673813 @default.
- W2976157432 hasConcept C111350023 @default.
- W2976157432 hasConcept C119857082 @default.
- W2976157432 hasConcept C124101348 @default.
- W2976157432 hasConcept C154945302 @default.
- W2976157432 hasConcept C160234255 @default.
- W2976157432 hasConcept C199360897 @default.
- W2976157432 hasConcept C22019652 @default.
- W2976157432 hasConcept C41008148 @default.
- W2976157432 hasConcept C43521106 @default.
- W2976157432 hasConcept C50644808 @default.
- W2976157432 hasConcept C57830394 @default.
- W2976157432 hasConceptScore W2976157432C107673813 @default.
- W2976157432 hasConceptScore W2976157432C111350023 @default.
- W2976157432 hasConceptScore W2976157432C119857082 @default.
- W2976157432 hasConceptScore W2976157432C124101348 @default.
- W2976157432 hasConceptScore W2976157432C154945302 @default.
- W2976157432 hasConceptScore W2976157432C160234255 @default.
- W2976157432 hasConceptScore W2976157432C199360897 @default.
- W2976157432 hasConceptScore W2976157432C22019652 @default.
- W2976157432 hasConceptScore W2976157432C41008148 @default.
- W2976157432 hasConceptScore W2976157432C43521106 @default.
- W2976157432 hasConceptScore W2976157432C50644808 @default.
- W2976157432 hasConceptScore W2976157432C57830394 @default.
- W2976157432 hasLocation W29761574321 @default.
- W2976157432 hasOpenAccess W2976157432 @default.
- W2976157432 hasPrimaryLocation W29761574321 @default.
- W2976157432 hasRelatedWork W11720838 @default.
- W2976157432 hasRelatedWork W11834243 @default.
- W2976157432 hasRelatedWork W13727092 @default.
- W2976157432 hasRelatedWork W2322691 @default.
- W2976157432 hasRelatedWork W731497 @default.
- W2976157432 hasRelatedWork W7543526 @default.
- W2976157432 hasRelatedWork W8028707 @default.
- W2976157432 hasRelatedWork W8854279 @default.
- W2976157432 hasRelatedWork W893480 @default.
- W2976157432 hasRelatedWork W11721397 @default.
- W2976157432 isParatext "false" @default.
- W2976157432 isRetracted "false" @default.
- W2976157432 magId "2976157432" @default.
- W2976157432 workType "article" @default.