Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976259715> ?p ?o ?g. }
- W2976259715 abstract "Abstract Background Structured reports have been shown to improve communication between radiologists and providers. However, some radiologists are concerned about resultant decreased workflow efficiency. We tested a machine learning-based algorithm designed to convert unstructured computed tomography pulmonary angiography (CTPA) reports into structured reports. Methods A self-supervised convolutional neural network-based algorithm was trained on a dataset of 475 manually structured CTPA reports. Labels for individual statements included “pulmonary arteries,” “lungs and airways,” “pleura,” “mediastinum and lymph nodes,” “cardiovascular,” “soft tissues and bones,” “upper abdomen,” and “lines/tubes.” The algorithm was applied to a test set of 400 unstructured CTPA reports, generating a predicted label for each statement, which was evaluated by two independent observers. Per-statement accuracy was calculated based on strict criteria (algorithm label counted as correct if the statement unequivocally contained content only related to that particular label) and a modified criteria, accounting for problematic statements, including typographical errors, statements that did not fit well into the classification scheme, statements containing content for multiple labels, etc. Results Of the 4,157 statements, 3,806 (91.6%) and 3,986 (95.9%) were correctly labeled by the algorithm using strict and modified criteria, respectively, while 274 (6.6%) were problematic for the manual observers to label, the majority of which ( n = 173) were due to more than one section being included in one statement. Conclusion This algorithm showed high accuracy in converting free-text findings into structured reports, which could improve communication between radiologists and clinicians without loss of productivity and provide more structured data for research/data mining applications." @default.
- W2976259715 created "2019-10-03" @default.
- W2976259715 creator A5020326587 @default.
- W2976259715 creator A5037066917 @default.
- W2976259715 creator A5051428818 @default.
- W2976259715 creator A5069035992 @default.
- W2976259715 creator A5073690527 @default.
- W2976259715 creator A5080475090 @default.
- W2976259715 creator A5087701283 @default.
- W2976259715 date "2019-09-23" @default.
- W2976259715 modified "2023-09-29" @default.
- W2976259715 title "Deep learning to convert unstructured CT pulmonary angiography reports into structured reports" @default.
- W2976259715 cites W1869282115 @default.
- W2976259715 cites W1985380810 @default.
- W2976259715 cites W2047846130 @default.
- W2976259715 cites W2087815614 @default.
- W2976259715 cites W2137490534 @default.
- W2976259715 cites W2137961864 @default.
- W2976259715 cites W2153081307 @default.
- W2976259715 cites W2412972264 @default.
- W2976259715 cites W2417466929 @default.
- W2976259715 cites W2511665394 @default.
- W2976259715 cites W2522633999 @default.
- W2976259715 cites W2597149148 @default.
- W2976259715 cites W2603538477 @default.
- W2976259715 cites W2772640411 @default.
- W2976259715 cites W2773199325 @default.
- W2976259715 cites W2943444949 @default.
- W2976259715 cites W2947939615 @default.
- W2976259715 doi "https://doi.org/10.1186/s41747-019-0118-1" @default.
- W2976259715 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6757071" @default.
- W2976259715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31549323" @default.
- W2976259715 hasPublicationYear "2019" @default.
- W2976259715 type Work @default.
- W2976259715 sameAs 2976259715 @default.
- W2976259715 citedByCount "23" @default.
- W2976259715 countsByYear W29762597152020 @default.
- W2976259715 countsByYear W29762597152021 @default.
- W2976259715 countsByYear W29762597152022 @default.
- W2976259715 countsByYear W29762597152023 @default.
- W2976259715 crossrefType "journal-article" @default.
- W2976259715 hasAuthorship W2976259715A5020326587 @default.
- W2976259715 hasAuthorship W2976259715A5037066917 @default.
- W2976259715 hasAuthorship W2976259715A5051428818 @default.
- W2976259715 hasAuthorship W2976259715A5069035992 @default.
- W2976259715 hasAuthorship W2976259715A5073690527 @default.
- W2976259715 hasAuthorship W2976259715A5080475090 @default.
- W2976259715 hasAuthorship W2976259715A5087701283 @default.
- W2976259715 hasBestOaLocation W29762597151 @default.
- W2976259715 hasConcept C11413529 @default.
- W2976259715 hasConcept C118552586 @default.
- W2976259715 hasConcept C119857082 @default.
- W2976259715 hasConcept C126838900 @default.
- W2976259715 hasConcept C154945302 @default.
- W2976259715 hasConcept C16568411 @default.
- W2976259715 hasConcept C177212765 @default.
- W2976259715 hasConcept C17744445 @default.
- W2976259715 hasConcept C199539241 @default.
- W2976259715 hasConcept C204321447 @default.
- W2976259715 hasConcept C2777026412 @default.
- W2976259715 hasConcept C2779889316 @default.
- W2976259715 hasConcept C2781347138 @default.
- W2976259715 hasConcept C41008148 @default.
- W2976259715 hasConcept C544519230 @default.
- W2976259715 hasConcept C71924100 @default.
- W2976259715 hasConcept C77088390 @default.
- W2976259715 hasConcept C81363708 @default.
- W2976259715 hasConceptScore W2976259715C11413529 @default.
- W2976259715 hasConceptScore W2976259715C118552586 @default.
- W2976259715 hasConceptScore W2976259715C119857082 @default.
- W2976259715 hasConceptScore W2976259715C126838900 @default.
- W2976259715 hasConceptScore W2976259715C154945302 @default.
- W2976259715 hasConceptScore W2976259715C16568411 @default.
- W2976259715 hasConceptScore W2976259715C177212765 @default.
- W2976259715 hasConceptScore W2976259715C17744445 @default.
- W2976259715 hasConceptScore W2976259715C199539241 @default.
- W2976259715 hasConceptScore W2976259715C204321447 @default.
- W2976259715 hasConceptScore W2976259715C2777026412 @default.
- W2976259715 hasConceptScore W2976259715C2779889316 @default.
- W2976259715 hasConceptScore W2976259715C2781347138 @default.
- W2976259715 hasConceptScore W2976259715C41008148 @default.
- W2976259715 hasConceptScore W2976259715C544519230 @default.
- W2976259715 hasConceptScore W2976259715C71924100 @default.
- W2976259715 hasConceptScore W2976259715C77088390 @default.
- W2976259715 hasConceptScore W2976259715C81363708 @default.
- W2976259715 hasIssue "1" @default.
- W2976259715 hasLocation W29762597151 @default.
- W2976259715 hasLocation W29762597152 @default.
- W2976259715 hasLocation W29762597153 @default.
- W2976259715 hasLocation W29762597154 @default.
- W2976259715 hasOpenAccess W2976259715 @default.
- W2976259715 hasPrimaryLocation W29762597151 @default.
- W2976259715 hasRelatedWork W2007192139 @default.
- W2976259715 hasRelatedWork W2025437766 @default.
- W2976259715 hasRelatedWork W2038455034 @default.
- W2976259715 hasRelatedWork W25883746 @default.
- W2976259715 hasRelatedWork W3021430260 @default.
- W2976259715 hasRelatedWork W3027997911 @default.
- W2976259715 hasRelatedWork W3155840328 @default.
- W2976259715 hasRelatedWork W4213018656 @default.