Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976439395> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2976439395 abstract "Despite the intensive research, the study on preventing the breakdown of the construction machine is still at its early stage, so we need to develop an autonomous and robust solution that minimizes equipment downtime and ensures the rigidity of equipment through predictive diagnostics. In particular, engine failure is critical to cause the entire system to stop, so that it is important to determine and predict the symptoms before the failure. However, at present, it is at a level to set specific indicators based on domain knowledge in order to judge the failure. This paper proposes an anomaly detection model for a 2.4L diesel engine, and verify the model using two main faults. The proposed method extracts 130 feature parameters based on autoencoder, which is a deep learning method, and distinguishes between normal and abnormal states by one-class SVM (OCSVM). Autoencoder automatically extracts useful features from multiple sensors on an excavator engine. The data from the engine can represent robust features by using features learned in latent variables using variational autoencoder to extract optimal features. In addition, OCSVM can detect abnormal state and then distinguish between two fault and unknown factors. The experimental results show the accuracy of about 73%, and the false alarm related to the reliability of this abnormality diagnosis model can be minimized to about 17%. Finally, to solve the problem of reliability and analysis of the model itself due to the problem of blackbox, which is a disadvantage of the deep learning model, the LIME analysis method is applied to list the sensor data that affected the determination of the abnormal state. Experts can easily make professional judgments about abnormal conditions and build a model in which known data about faults and symptoms are continuously increasing. The proposed method could improve the accuracy of the model by adding expert knowledge to data-based model." @default.
- W2976439395 created "2019-10-03" @default.
- W2976439395 creator A5011178657 @default.
- W2976439395 creator A5022491669 @default.
- W2976439395 date "2019-09-22" @default.
- W2976439395 modified "2023-09-24" @default.
- W2976439395 title "Anomaly Detection of 2.4L Diesel Engine Using One-Class SVM with Variational Autoencoder" @default.
- W2976439395 cites W1995430360 @default.
- W2976439395 cites W2053757129 @default.
- W2976439395 cites W2121128139 @default.
- W2976439395 cites W2154506590 @default.
- W2976439395 cites W2158958729 @default.
- W2976439395 cites W2265497589 @default.
- W2976439395 cites W2317595875 @default.
- W2976439395 cites W2743189459 @default.
- W2976439395 cites W2744067593 @default.
- W2976439395 cites W2785435926 @default.
- W2976439395 cites W2803697594 @default.
- W2976439395 cites W2804769055 @default.
- W2976439395 cites W2872350107 @default.
- W2976439395 cites W2951501516 @default.
- W2976439395 doi "https://doi.org/10.36001/phmconf.2019.v11i1.804" @default.
- W2976439395 hasPublicationYear "2019" @default.
- W2976439395 type Work @default.
- W2976439395 sameAs 2976439395 @default.
- W2976439395 citedByCount "1" @default.
- W2976439395 countsByYear W29764393952022 @default.
- W2976439395 crossrefType "journal-article" @default.
- W2976439395 hasAuthorship W2976439395A5011178657 @default.
- W2976439395 hasAuthorship W2976439395A5022491669 @default.
- W2976439395 hasBestOaLocation W29764393951 @default.
- W2976439395 hasConcept C101738243 @default.
- W2976439395 hasConcept C108583219 @default.
- W2976439395 hasConcept C111919701 @default.
- W2976439395 hasConcept C119857082 @default.
- W2976439395 hasConcept C121332964 @default.
- W2976439395 hasConcept C12267149 @default.
- W2976439395 hasConcept C127413603 @default.
- W2976439395 hasConcept C152745839 @default.
- W2976439395 hasConcept C153180895 @default.
- W2976439395 hasConcept C154945302 @default.
- W2976439395 hasConcept C163258240 @default.
- W2976439395 hasConcept C171146098 @default.
- W2976439395 hasConcept C172707124 @default.
- W2976439395 hasConcept C180591934 @default.
- W2976439395 hasConcept C2780804531 @default.
- W2976439395 hasConcept C41008148 @default.
- W2976439395 hasConcept C43214815 @default.
- W2976439395 hasConcept C62520636 @default.
- W2976439395 hasConcept C739882 @default.
- W2976439395 hasConceptScore W2976439395C101738243 @default.
- W2976439395 hasConceptScore W2976439395C108583219 @default.
- W2976439395 hasConceptScore W2976439395C111919701 @default.
- W2976439395 hasConceptScore W2976439395C119857082 @default.
- W2976439395 hasConceptScore W2976439395C121332964 @default.
- W2976439395 hasConceptScore W2976439395C12267149 @default.
- W2976439395 hasConceptScore W2976439395C127413603 @default.
- W2976439395 hasConceptScore W2976439395C152745839 @default.
- W2976439395 hasConceptScore W2976439395C153180895 @default.
- W2976439395 hasConceptScore W2976439395C154945302 @default.
- W2976439395 hasConceptScore W2976439395C163258240 @default.
- W2976439395 hasConceptScore W2976439395C171146098 @default.
- W2976439395 hasConceptScore W2976439395C172707124 @default.
- W2976439395 hasConceptScore W2976439395C180591934 @default.
- W2976439395 hasConceptScore W2976439395C2780804531 @default.
- W2976439395 hasConceptScore W2976439395C41008148 @default.
- W2976439395 hasConceptScore W2976439395C43214815 @default.
- W2976439395 hasConceptScore W2976439395C62520636 @default.
- W2976439395 hasConceptScore W2976439395C739882 @default.
- W2976439395 hasLocation W29764393951 @default.
- W2976439395 hasOpenAccess W2976439395 @default.
- W2976439395 hasPrimaryLocation W29764393951 @default.
- W2976439395 hasRelatedWork W13034104 @default.
- W2976439395 hasRelatedWork W14465466 @default.
- W2976439395 hasRelatedWork W4067679 @default.
- W2976439395 hasRelatedWork W4947539 @default.
- W2976439395 hasRelatedWork W6091113 @default.
- W2976439395 hasRelatedWork W6229082 @default.
- W2976439395 hasRelatedWork W6717794 @default.
- W2976439395 hasRelatedWork W7942895 @default.
- W2976439395 hasRelatedWork W9391320 @default.
- W2976439395 hasRelatedWork W9952751 @default.
- W2976439395 isParatext "false" @default.
- W2976439395 isRetracted "false" @default.
- W2976439395 magId "2976439395" @default.
- W2976439395 workType "article" @default.