Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976614915> ?p ?o ?g. }
- W2976614915 abstract "Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable." @default.
- W2976614915 created "2019-10-03" @default.
- W2976614915 creator A5037178137 @default.
- W2976614915 creator A5041265331 @default.
- W2976614915 creator A5046645047 @default.
- W2976614915 creator A5051004995 @default.
- W2976614915 creator A5084159324 @default.
- W2976614915 creator A5084576455 @default.
- W2976614915 date "2019-11-18" @default.
- W2976614915 modified "2023-10-12" @default.
- W2976614915 title "Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering" @default.
- W2976614915 cites W1495649094 @default.
- W2976614915 cites W1580551725 @default.
- W2976614915 cites W1967087625 @default.
- W2976614915 cites W1998965915 @default.
- W2976614915 cites W2006986124 @default.
- W2976614915 cites W2027514285 @default.
- W2976614915 cites W2042865986 @default.
- W2976614915 cites W2118258530 @default.
- W2976614915 cites W2118814218 @default.
- W2976614915 cites W2122866775 @default.
- W2976614915 cites W2126619650 @default.
- W2976614915 cites W2128768066 @default.
- W2976614915 cites W2137734450 @default.
- W2976614915 cites W2158135353 @default.
- W2976614915 cites W2163738586 @default.
- W2976614915 cites W2231149964 @default.
- W2976614915 cites W2274610632 @default.
- W2976614915 cites W2290358829 @default.
- W2976614915 cites W2313125707 @default.
- W2976614915 cites W2334629405 @default.
- W2976614915 cites W2427122612 @default.
- W2976614915 cites W2523104495 @default.
- W2976614915 cites W2537679995 @default.
- W2976614915 cites W2549247408 @default.
- W2976614915 cites W2586830972 @default.
- W2976614915 cites W2590330699 @default.
- W2976614915 cites W2611747160 @default.
- W2976614915 cites W2736520162 @default.
- W2976614915 cites W2750245257 @default.
- W2976614915 cites W2755677357 @default.
- W2976614915 cites W2756098496 @default.
- W2976614915 cites W2756148272 @default.
- W2976614915 cites W2761570368 @default.
- W2976614915 cites W2766300642 @default.
- W2976614915 cites W2770191688 @default.
- W2976614915 cites W2780584018 @default.
- W2976614915 cites W2782565892 @default.
- W2976614915 cites W2789316776 @default.
- W2976614915 cites W2791507884 @default.
- W2976614915 cites W2792533056 @default.
- W2976614915 cites W2799372216 @default.
- W2976614915 cites W2887425479 @default.
- W2976614915 cites W2887822654 @default.
- W2976614915 cites W2895798038 @default.
- W2976614915 cites W2896172590 @default.
- W2976614915 cites W2896541477 @default.
- W2976614915 cites W2898240595 @default.
- W2976614915 cites W2899288360 @default.
- W2976614915 cites W2900329012 @default.
- W2976614915 cites W2900569176 @default.
- W2976614915 cites W2900694973 @default.
- W2976614915 cites W2900891475 @default.
- W2976614915 cites W2901697402 @default.
- W2976614915 cites W2901754076 @default.
- W2976614915 cites W2903730942 @default.
- W2976614915 cites W2905837927 @default.
- W2976614915 cites W2907305901 @default.
- W2976614915 cites W2911389042 @default.
- W2976614915 cites W2911481117 @default.
- W2976614915 cites W2914174212 @default.
- W2976614915 cites W2914284561 @default.
- W2976614915 cites W2914746407 @default.
- W2976614915 cites W2921754629 @default.
- W2976614915 cites W2923490814 @default.
- W2976614915 cites W2930902918 @default.
- W2976614915 cites W2950834624 @default.
- W2976614915 cites W4235122561 @default.
- W2976614915 cites W871399632 @default.
- W2976614915 doi "https://doi.org/10.2174/1566523219666190924113737" @default.
- W2976614915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31549953" @default.
- W2976614915 hasPublicationYear "2019" @default.
- W2976614915 type Work @default.
- W2976614915 sameAs 2976614915 @default.
- W2976614915 citedByCount "7" @default.
- W2976614915 countsByYear W29766149152019 @default.
- W2976614915 countsByYear W29766149152020 @default.
- W2976614915 countsByYear W29766149152021 @default.
- W2976614915 countsByYear W29766149152022 @default.
- W2976614915 crossrefType "journal-article" @default.
- W2976614915 hasAuthorship W2976614915A5037178137 @default.
- W2976614915 hasAuthorship W2976614915A5041265331 @default.
- W2976614915 hasAuthorship W2976614915A5046645047 @default.
- W2976614915 hasAuthorship W2976614915A5051004995 @default.
- W2976614915 hasAuthorship W2976614915A5084159324 @default.
- W2976614915 hasAuthorship W2976614915A5084576455 @default.
- W2976614915 hasConcept C104317684 @default.
- W2976614915 hasConcept C117220453 @default.
- W2976614915 hasConcept C12267149 @default.
- W2976614915 hasConcept C142724271 @default.