Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976649046> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2976649046 endingPage "83" @default.
- W2976649046 startingPage "63" @default.
- W2976649046 abstract "We give a new proof that three families of polynomials coincide: the double Schubert polynomials of Lascoux and Schutzenberger defined by divided difference operators, the pipe dream polynomials of Bergeron and Billey, and the equivariant cohomology classes of matrix Schubert varieties. All three families are shown to satisfy a co-transition formula which we explain to be some extent projectively dual to Lascoux' transition formula. We comment on the K-theoretic extensions." @default.
- W2976649046 created "2019-10-03" @default.
- W2976649046 creator A5074655749 @default.
- W2976649046 date "2022-03-31" @default.
- W2976649046 modified "2023-09-27" @default.
- W2976649046 title "Schubert Polynomials, Pipe Dreams, Equivariant Classes, and a Co-transition Formula" @default.
- W2976649046 cites W1553824818 @default.
- W2976649046 cites W1565192513 @default.
- W2976649046 cites W1867438006 @default.
- W2976649046 cites W1983411343 @default.
- W2976649046 cites W2075635870 @default.
- W2976649046 cites W2124762879 @default.
- W2976649046 cites W2964082626 @default.
- W2976649046 cites W2964131157 @default.
- W2976649046 cites W3037801584 @default.
- W2976649046 doi "https://doi.org/10.1017/9781108877855.003" @default.
- W2976649046 hasPublicationYear "2022" @default.
- W2976649046 type Work @default.
- W2976649046 sameAs 2976649046 @default.
- W2976649046 citedByCount "7" @default.
- W2976649046 countsByYear W29766490462020 @default.
- W2976649046 countsByYear W29766490462021 @default.
- W2976649046 countsByYear W29766490462023 @default.
- W2976649046 crossrefType "book-chapter" @default.
- W2976649046 hasAuthorship W2976649046A5074655749 @default.
- W2976649046 hasBestOaLocation W29766490462 @default.
- W2976649046 hasConcept C136119220 @default.
- W2976649046 hasConcept C138885662 @default.
- W2976649046 hasConcept C171036898 @default.
- W2976649046 hasConcept C202444582 @default.
- W2976649046 hasConcept C2780980858 @default.
- W2976649046 hasConcept C33923547 @default.
- W2976649046 hasConcept C41895202 @default.
- W2976649046 hasConcept C72738302 @default.
- W2976649046 hasConcept C78606066 @default.
- W2976649046 hasConcept C97912942 @default.
- W2976649046 hasConceptScore W2976649046C136119220 @default.
- W2976649046 hasConceptScore W2976649046C138885662 @default.
- W2976649046 hasConceptScore W2976649046C171036898 @default.
- W2976649046 hasConceptScore W2976649046C202444582 @default.
- W2976649046 hasConceptScore W2976649046C2780980858 @default.
- W2976649046 hasConceptScore W2976649046C33923547 @default.
- W2976649046 hasConceptScore W2976649046C41895202 @default.
- W2976649046 hasConceptScore W2976649046C72738302 @default.
- W2976649046 hasConceptScore W2976649046C78606066 @default.
- W2976649046 hasConceptScore W2976649046C97912942 @default.
- W2976649046 hasLocation W29766490461 @default.
- W2976649046 hasLocation W29766490462 @default.
- W2976649046 hasOpenAccess W2976649046 @default.
- W2976649046 hasPrimaryLocation W29766490461 @default.
- W2976649046 hasRelatedWork W1069037 @default.
- W2976649046 hasRelatedWork W1069222 @default.
- W2976649046 hasRelatedWork W1269387 @default.
- W2976649046 hasRelatedWork W1411474 @default.
- W2976649046 hasRelatedWork W1540191 @default.
- W2976649046 hasRelatedWork W1969282 @default.
- W2976649046 hasRelatedWork W2239883 @default.
- W2976649046 hasRelatedWork W3435803 @default.
- W2976649046 hasRelatedWork W4370967 @default.
- W2976649046 hasRelatedWork W5097153 @default.
- W2976649046 isParatext "false" @default.
- W2976649046 isRetracted "false" @default.
- W2976649046 magId "2976649046" @default.
- W2976649046 workType "book-chapter" @default.