Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976807053> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2976807053 endingPage "105044" @default.
- W2976807053 startingPage "105044" @default.
- W2976807053 abstract "Active learning is an effective methodology to relieve the tedious and expensive work of manual annotation for many supervised learning applications. The active learning framework with good performance usually contains powerful learning models and delicate active learning strategies. Gaussian process (GP)-based active learning was proposed to be one of the most effective methods. However, the single GP suffers from the limitation of not modeling multimodal data well enough, and thus existing active learning strategies based on GPs only make use of limited information from data. In this paper, we propose three novel active learning methods, in which the existing mixture of GP model (MGP) is adjusted as the learning model and three active learning strategies are designed based on the adjusted MGP. Through experiments on multiple data sets, we analyze the performance and characteristics of the three proposed active learning methods, and further compare with popular GP-based methods and some other state-of-the-art methods." @default.
- W2976807053 created "2019-10-03" @default.
- W2976807053 creator A5036519850 @default.
- W2976807053 creator A5047846625 @default.
- W2976807053 creator A5065694592 @default.
- W2976807053 creator A5065846668 @default.
- W2976807053 date "2020-01-01" @default.
- W2976807053 modified "2023-10-14" @default.
- W2976807053 title "Promoting active learning with mixtures of Gaussian processes" @default.
- W2976807053 cites W1901616594 @default.
- W2976807053 cites W1994005439 @default.
- W2976807053 cites W1999357302 @default.
- W2976807053 cites W2007621462 @default.
- W2976807053 cites W2012878613 @default.
- W2976807053 cites W2140539195 @default.
- W2976807053 cites W2160299137 @default.
- W2976807053 cites W2187105870 @default.
- W2976807053 cites W2201054263 @default.
- W2976807053 cites W2233838193 @default.
- W2976807053 cites W2237301560 @default.
- W2976807053 cites W2260538545 @default.
- W2976807053 cites W2343213531 @default.
- W2976807053 cites W2605343357 @default.
- W2976807053 cites W2711122919 @default.
- W2976807053 cites W2741304800 @default.
- W2976807053 cites W2789942211 @default.
- W2976807053 cites W2800666469 @default.
- W2976807053 cites W2875415200 @default.
- W2976807053 cites W2962745799 @default.
- W2976807053 cites W337013881 @default.
- W2976807053 doi "https://doi.org/10.1016/j.knosys.2019.105044" @default.
- W2976807053 hasPublicationYear "2020" @default.
- W2976807053 type Work @default.
- W2976807053 sameAs 2976807053 @default.
- W2976807053 citedByCount "10" @default.
- W2976807053 countsByYear W29768070532020 @default.
- W2976807053 countsByYear W29768070532021 @default.
- W2976807053 countsByYear W29768070532022 @default.
- W2976807053 countsByYear W29768070532023 @default.
- W2976807053 crossrefType "journal-article" @default.
- W2976807053 hasAuthorship W2976807053A5036519850 @default.
- W2976807053 hasAuthorship W2976807053A5047846625 @default.
- W2976807053 hasAuthorship W2976807053A5065694592 @default.
- W2976807053 hasAuthorship W2976807053A5065846668 @default.
- W2976807053 hasConcept C111919701 @default.
- W2976807053 hasConcept C119857082 @default.
- W2976807053 hasConcept C121332964 @default.
- W2976807053 hasConcept C154945302 @default.
- W2976807053 hasConcept C163716315 @default.
- W2976807053 hasConcept C24138899 @default.
- W2976807053 hasConcept C41008148 @default.
- W2976807053 hasConcept C58973888 @default.
- W2976807053 hasConcept C61326573 @default.
- W2976807053 hasConcept C62520636 @default.
- W2976807053 hasConcept C77967617 @default.
- W2976807053 hasConcept C98045186 @default.
- W2976807053 hasConceptScore W2976807053C111919701 @default.
- W2976807053 hasConceptScore W2976807053C119857082 @default.
- W2976807053 hasConceptScore W2976807053C121332964 @default.
- W2976807053 hasConceptScore W2976807053C154945302 @default.
- W2976807053 hasConceptScore W2976807053C163716315 @default.
- W2976807053 hasConceptScore W2976807053C24138899 @default.
- W2976807053 hasConceptScore W2976807053C41008148 @default.
- W2976807053 hasConceptScore W2976807053C58973888 @default.
- W2976807053 hasConceptScore W2976807053C61326573 @default.
- W2976807053 hasConceptScore W2976807053C62520636 @default.
- W2976807053 hasConceptScore W2976807053C77967617 @default.
- W2976807053 hasConceptScore W2976807053C98045186 @default.
- W2976807053 hasFunder F4320321001 @default.
- W2976807053 hasLocation W29768070531 @default.
- W2976807053 hasOpenAccess W2976807053 @default.
- W2976807053 hasPrimaryLocation W29768070531 @default.
- W2976807053 hasRelatedWork W184546935 @default.
- W2976807053 hasRelatedWork W2295628041 @default.
- W2976807053 hasRelatedWork W2597787948 @default.
- W2976807053 hasRelatedWork W2951786554 @default.
- W2976807053 hasRelatedWork W2954428433 @default.
- W2976807053 hasRelatedWork W3196155444 @default.
- W2976807053 hasRelatedWork W3200361725 @default.
- W2976807053 hasRelatedWork W3210156800 @default.
- W2976807053 hasRelatedWork W4319309271 @default.
- W2976807053 hasRelatedWork W4320063314 @default.
- W2976807053 hasVolume "188" @default.
- W2976807053 isParatext "false" @default.
- W2976807053 isRetracted "false" @default.
- W2976807053 magId "2976807053" @default.
- W2976807053 workType "article" @default.