Matches in SemOpenAlex for { <https://semopenalex.org/work/W2976843492> ?p ?o ?g. }
- W2976843492 endingPage "16566" @default.
- W2976843492 startingPage "16549" @default.
- W2976843492 abstract "Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants. Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants. Plants produce diverse and often abundant chemical compounds, which play critical roles in these sessile and multicellular organisms to habitat in various environmental niches. Many of these phytochemicals are produced in a lineage-specific manner and thus are often referred to as specialized or secondary metabolites. Many of these plant natural products also provide essential nutrients and valuable resources for the production of pharmaceuticals and biomaterials to the human society (1Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod. 2016; 79 (26852623): 629-66110.1021/acs.jnatprod.5b01055Crossref PubMed Scopus (2769) Google Scholar, 2McChesney J.D. Venkataraman S.K. Henri J.T. Plant natural products: back to the future or into extinction?.Phytochemistry. 2007; 68 (17574638): 2015-202210.1016/j.phytochem.2007.04.032Crossref PubMed Scopus (220) Google Scholar3Kutchan T.M. Gershenzon J. Moller B.L. Gang D.R. Buchanan B.B. Gruissem W. Jones R.L. Biochemistry and Molecular Biology of Plants. 2nd Ed. American Society of Plant Physiologists, Rockville, MD2015Google Scholar). Nextgen sequencing and advanced MS technologies are enabling rapid identification of plant-specialized metabolic enzymes (4Caputi L. Franke J. Farrow S.C. Chung K. Payne R.M.E. Nguyen T.-D. Dang T.-T. Soares Teto Carqueijeiro I. Koudounas K. Dugé de Bernonville T. Ameyaw B. Jones D.M. Vieira I.J.C. Courdavault V. O’Connor S.E. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle.Science. 2018; 360 (29724909): 1235-123910.1126/science.aat4100Crossref PubMed Scopus (87) Google Scholar5Itkin M. Heinig U. Tzfadia O. Bhide A.J. Shinde B. Cardenas P.D. Bocobza S.E. Unger T. Malitsky S. Finkers R. Tikunov Y. Bovy A. Chikate Y. Singh P. Rogachev I. et al.Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes.Science. 2013; 341 (23788733): 175-17910.1126/science.1240230Crossref PubMed Scopus (264) Google Scholar, 6Lau W. Sattely E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone.Science. 2015; 349 (26359402): 1224-122810.1126/science.aac7202Crossref PubMed Scopus (155) Google Scholar7Winzer T. Gazda V. He Z. Kaminski F. Kern M. Larson T.R. Li Y. Meade F. Teodor R. Vaistij F.E. Walker C. Bowser T.A. Graham I.A. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.Science. 2012; 336 (22653730): 1704-170810.1126/science.1220757Crossref PubMed Scopus (190) Google Scholar) and are providing exciting opportunities to produce plant natural products in heterologous systems through synthetic biology (Fig. 1A). Microbial hosts, having well-developed genetic tools and industrial-scale culture methods (e.g. yeast), have been engineered to build chemical production platforms that are optimized for a certain primary metabolic branch on which various downstream pathways, including plant specialized metabolic pathways, have been introduced (8Ajikumar P.K. Xiao W.-H. Tyo K.E. Wang Y. Simeon F. Leonard E. Mucha O. Phon T.H. Pfeifer B. Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.Science. 2010; 330 (20929806): 70-7410.1126/science.1191652Crossref PubMed Scopus (1086) Google Scholar9Brown S. Clastre M. Courdavault V. O'Connor S.E. De novo production of the plant-derived alkaloid strictosidine in yeast.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (25675512): 3205-321010.1073/pnas.1423555112Crossref PubMed Scopus (202) Google Scholar, 10Galanie S. Thodey K. Trenchard I.J. Filsinger Interrante M. Smolke C.D. Complete biosynthesis of opioids in yeast.Science. 2015; 349 (26272907): 1095-110010.1126/science.aac9373Crossref PubMed Scopus (444) Google Scholar, 11Lim C.G. Fowler Z.L. Hueller T. Schaffer S. Koffas M.A. High-yield resveratrol production in engineered Escherichia coli.Appl. Environ. Microbiol. 2011; 77 (21441338): 3451-346010.1128/AEM.02186-10Crossref PubMed Scopus (188) Google Scholar, 12Ro D.-K. Paradise E.M. Ouellet M. Fisher K.J. Newman K.L. Ndungu J.M. Ho K.A. Eachus R.A. Ham T.S. Kirby J. Chang M.C. Withers S.T. Shiba Y. Sarpong R. Keasling J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.Nature. 2006; 440 (16612385): 940-94310.1038/nature04640Crossref PubMed Scopus (1930) Google Scholar, 13Dejong J.M. Liu Y. Bollon A.P. Long R.M. Jennewein S. Williams D. Croteau R.B. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae.Biotechnol. Bioeng. 2006; 93 (16161138): 212-22410.1002/bit.20694Crossref PubMed Scopus (0) Google Scholar, 14Paddon C.J. Westfall P.J. Pitera D.J. Benjamin K. Fisher K. McPhee D. Leavell M.D. Tai A. Main A. Eng D. Polichuk D.R. Teoh K.H. Reed D.W. Treynor T. Lenihan J. et al.High-level semi-synthetic production of the potent antimalarial artemisinin.Nature. 2013; 496 (23575629): 528-53210.1038/nature12051Crossref PubMed Scopus (1086) Google Scholar15Grewal P.S. Modavi C. Russ Z.N. Harris N.C. Dueber J.E. Bioproduction of a betalain color palette in Saccharomyces cerevisiae.Metab. Eng. 2018; 45 (29247865): 180-18810.1016/j.ymben.2017.12.008Crossref PubMed Scopus (12) Google Scholar). Although significant success has been made in industrial-scale terpenoid production in microbes (8Ajikumar P.K. Xiao W.-H. Tyo K.E. Wang Y. Simeon F. Leonard E. Mucha O. Phon T.H. Pfeifer B. Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.Science. 2010; 330 (20929806): 70-7410.1126/science.1191652Crossref PubMed Scopus (1086) Google Scholar, 14Paddon C.J. Westfall P.J. Pitera D.J. Benjamin K. Fisher K. McPhee D. Leavell M.D. Tai A. Main A. Eng D. Polichuk D.R. Teoh K.H. Reed D.W. Treynor T. Lenihan J. et al.High-level semi-synthetic production of the potent antimalarial artemisinin.Nature. 2013; 496 (23575629): 528-53210.1038/nature12051Crossref PubMed Scopus (1086) Google Scholar), microbial production of certain classes of plant natural products, such as alkaloids and phenolics, appear to be more challenging, likely due to their toxicity, pathway complexity, and inefficiency of plant-derived enzymes (10Galanie S. Thodey K. Trenchard I.J. Filsinger Interrante M. Smolke C.D. Complete biosynthesis of opioids in yeast.Science. 2015; 349 (26272907): 1095-110010.1126/science.aac9373Crossref PubMed Scopus (444) Google Scholar, 16Li S. Li Y. Smolke C.D. Strategies for microbial synthesis of high-value phytochemicals.Nat. Chem. 2018; 10 (29568052): 395-40410.1038/s41557-018-0013-zCrossref PubMed Scopus (40) Google Scholar, 17Gottardi M. Reifenrath M. Boles E. Tripp J. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.FEMS Yeast Res. 2017; 17 (28582489)10.1093/femsyr/fox035Crossref Scopus (19) Google Scholar18Noda S. Kondo A. Recent advances in microbial production of aromatic chemicals and derivatives.Trends Biotechnol. 2017; 35 (28645530): 785-79610.1016/j.tibtech.2017.05.006Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). The use of heterologous plant hosts, although still in early stages, provides alternative and sustainable means to produce plant natural products, which take advantage of global cultivation systems that are propelled by endogenous photosynthetic energy production and carbon fixation (Fig. 1B) (19Owen C. Patron N.J. Huang A. Osbourn A. Harnessing plant metabolic diversity.Curr. Opin. Chem. Biol. 2017; 40 (28527344): 24-3010.1016/j.cbpa.2017.04.015Crossref PubMed Scopus (25) Google Scholar20Yoon J.M. Zhao L. Shanks J.V. Metabolic engineering with plants for a sustainable biobased economy.Annu. Rev. Chem. Biomol. Eng. 2013; 4 (23540288): 211-23710.1146/annurev-chembioeng-061312-103320Crossref PubMed Scopus (19) Google Scholar, 21Yuan L. Grotewold E. Metabolic engineering to enhance the value of plants as green factories.Metab. Eng. 2015; 27 (25461830): 83-9110.1016/j.ymben.2014.11.005Crossref PubMed Google Scholar22Gerasymenko I. Sheludko Y. Fräbel S. Staniek A. Warzecha H. Combinatorial biosynthesis of small molecules in plants: engineering strategies and tools.Methods Enzymol. 2019; 617 (30784411): 413-44210.1016/bs.mie.2018.12.005Crossref PubMed Scopus (3) Google Scholar). The past decade of investments and efforts in developing bioenergy crops (e.g. perennial grasses, fast-growing trees) have further advanced opportunities to grow high-yielding plants in marginal lands, which can avoid direct competition with food crop production and minimize environmental impacts (23Yuan J.S. Tiller K.H. Al-Ahmad H. Stewart N.R. Stewart C.N. Plants to power: bioenergy to fuel the future.Trends Plant Sci. 2008; 13 (18632303): 421-42910.1016/j.tplants.2008.06.001Abstract Full Text Full Text PDF PubMed Scopus (311) Google Scholar24Shih P.M. Towards a sustainable bio-based economy: redirecting primary metabolism to new products with plant synthetic biology.Plant Sci. 2018; 273 (29907312): 84-9110.1016/j.plantsci.2018.03.012Crossref PubMed Scopus (6) Google Scholar, 25Chang M.C. Harnessing energy from plant biomass.Curr. Opin. Chem. Biol. 2007; 11 (17942363): 677-68410.1016/j.cbpa.2007.08.039Crossref PubMed Scopus (106) Google Scholar, 26Robertson G.P. Hamilton S.K. Barham B.L. Dale B.E. Izaurralde R.C. Jackson R.D. Landis D.A. Swinton S.M. Thelen K.D. Tiedje J.M. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes.Science. 2017; 356 (28663443): eaal232410.1126/science.aal2324Crossref PubMed Scopus (145) Google Scholar, 27Calviño M. Messing J. Sweet sorghum as a model system for bioenergy crops.Curr. Opin. Biotechnol. 2012; 23 (22204822): 323-32910.1016/j.copbio.2011.12.002Crossref PubMed Scopus (0) Google Scholar28de Siqueira Ferreira S. Nishiyama Jr., M.Y. Paterson A.H. Souza G.M. Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era.Genome Biol. 2013; 14 (23805917): 21010.1186/gb-2013-14-6-210Crossref PubMed Scopus (19) Google Scholar). Plant hosts may also have better storage capacity and toxicity resistance for phytochemical production compared with microbial hosts (Fig. 1B). Thus, plant chassis potentially provide promising alternative platforms to produce some of these metabolites that are difficult to produce in microbes, especially if tailored plant hosts (or chassis) are carefully selected and generated depending on downstream target compounds. Many specialized metabolic pathways have been successfully introduced to heterologous plants (29Farhi M. Marhevka E. Ben-Ari J. Algamas-Dimantov A. Liang Z. Zeevi V. Edelbaum O. Spitzer-Rimon B. Abeliovich H. Schwartz B. Tzfira T. Vainstein A. Generation of the potent anti-malarial drug artemisinin in tobacco.Nat. Biotechnol. 2011; 29 (22158354): 1072-107410.1038/nbt.2054Crossref PubMed Scopus (87) Google Scholar30Lu Y. Rijzaani H. Karcher D. Ruf S. Bock R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23382222): E623-E63210.1073/pnas.1216898110Crossref PubMed Scopus (117) Google Scholar, 31Miettinen K. Dong L. Navrot N. Schneider T. Burlat V. Pollier J. Woittiez L. van der Krol S. Lugan R. Ilc T. Verpoorte R. Oksman-Caldentey K.-M. Martinoia E. Bouwmeester H. Goossens A. et al.The seco-iridoid pathway from Catharanthus roseus.Nat. Commun. 2014; 5 (24710322): 360610.1038/ncomms4606Crossref PubMed Scopus (236) Google Scholar, 32Mikkelsen M.D. Olsen C.E. Halkier B.A. Production of the cancer-preventive glucoraphanin in tobacco.Mol. Plant. 2010; 3 (20457641): 751-75910.1093/mp/ssq020Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 33Polturak G. Grossman N. Vela-Corcia D. Dong Y. Nudel A. Pliner M. Levy M. Rogachev I. Aharoni A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28760998): 9062-906710.1073/pnas.1707176114Crossref PubMed Scopus (0) Google Scholar34Runguphan W. Qu X. O’Connor S.E. Integrating carbon–halogen bond formation into medicinal plant metabolism.Nature. 2010; 468 (21048708): 461-46410.1038/nature09524Crossref PubMed Scopus (0) Google Scholar). However, relatively little effort has been made in plants to optimize the supply of their primary metabolite precursors (e.g. amino acids, sugars, nucleotides, and fatty acids), from which specialized metabolites are produced (Fig. 1A) (24Shih P.M. Towards a sustainable bio-based economy: redirecting primary metabolism to new products with plant synthetic biology.Plant Sci. 2018; 273 (29907312): 84-9110.1016/j.plantsci.2018.03.012Crossref PubMed Scopus (6) Google Scholar). Microbial metabolic engineering and synthetic biology studies demonstrated that redirection of carbon flux and efficient supply of a specific primary precursor(s) are critical to achieve efficient production of downstream target products (Fig. 1A) (16Li S. Li Y. Smolke C.D. Strategies for microbial synthesis of high-value phytochemicals.Nat. Chem. 2018; 10 (29568052): 395-40410.1038/s41557-018-0013-zCrossref PubMed Scopus (40) Google Scholar, 35Huccetogullari D. Luo Z.W. Lee S.Y. Metabolic engineering of microorganisms for production of aromatic compounds.Microb. Cell Fact. 2019; 18 (30808357): 4110.1186/s12934-019-1090-4Crossref PubMed Scopus (20) Google Scholar36Kirby J. Keasling J.D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering.Annu. Rev. Plant Biol. 2009; 60 (19575586): 335-35510.1146/annurev.arplant.043008.091955Crossref PubMed Scopus (302) Google Scholar, 37Nielsen J. Keasling J.D. Engineering cellular metabolism.Cell. 2016; 164 (26967285): 1185-119710.1016/j.cell.2016.02.004Abstract Full Text Full Text PDF PubMed Scopus (470) Google Scholar38Vickers C.E. Williams T.C. Peng B. Cherry J. Recent advances in synthetic biology for engineering isoprenoid production in yeast.Curr. Opin. Chem. Biol. 2017; 40 (28623722): 47-5610.1016/j.cbpa.2017.05.017Crossref PubMed Scopus (57) Google Scholar). Thus, holistic understanding and engineering of both primary and specialized metabolisms are crucial for efficient and sizable production of natural products in plants. Unlike in microbes, engineering of plant primary metabolism poses several major challenges (Fig. 1B). (i) There is a much more limited capacity to conduct genetic engineering and mutagenesis screening in plants than in microbes, due to low transformation efficiency and long generation cycles of most plants (months to years versus hours to days). (ii) Plant metabolism is likely more constrained due to almost exclusive reliance on the carbon input from photosynthetic CO2 fixation, unlike microbes that can utilize multiple carbon sources. (iii) Plant primary metabolic pathways are tightly integrated with each other and directly linked to the growth and development of these complex multicellular organisms, and their manipulation often compromises overall growth and yield (39Shaul O. Galili G. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase.Plant Mol. Biol. 1993; 23 (8251629): 759-76810.1007/BF00021531Crossref PubMed Google Scholar40Bartlem D. Lambein I. Okamoto T. Itaya A. Uda Y. Kijima F. Tamaki Y. Nambara E. Naito S. Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis.Plant Physiol. 2000; 123 (10806229): 101-11010.1104/pp.123.1.101Crossref PubMed Google Scholar, 41Hacham Y. Avraham T. Amir R. The N-terminal region of Arabidopsis cystathionine γ-synthase plays an important regulatory role in methionine metabolism.Plant Physiol. 2002; 128 (11842149): 454-46210.1104/pp.010819Crossref PubMed Google Scholar, 42Li X. Bonawitz N.D. Weng J.K. Chapple C. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids.Plant Cell. 2010; 22 (20511296): 1620-163210.1105/tpc.110.074161Crossref PubMed Scopus (128) Google Scholar, 43Kim J.I. Ciesielski P.N. Donohoe B.S. Chapple C. Li X. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools.Plant Physiol. 2014; 164 (24381065): 584-59510.1104/pp.113.229393Crossref PubMed Scopus (21) Google Scholar44Nandi A. Krothapalli K. Buseman C.M. Li M. Welti R. Enyedi A. Shah J. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase.Plant Cell. 2003; 15 (14507997): 2383-239810.1105/tpc.015529Crossref PubMed Scopus (0) Google Scholar). One way to overcome these challenges is to carefully choose host plants, which are naturally tailored toward production of certain classes of compounds, and then to conduct rational and precise engineering of primary metabolism to optimize a certain precursor supply. Here, I discuss one promising approach to achieve this goal by learning from millions of years of experimentations that nature has done. Although primary metabolism is generally assumed to be conserved across the plant kingdom, unlike highly-diversified specialized metabolism (45Moghe G.D. Last R.L. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism.Plant Physiol. 2015; 169 (26276843): 1512-152310.1104/pp.15.00994PubMed Google Scholar46Pichersky E. Lewinsohn E. Convergent evolution in plant specialized metabolism.Annu. Rev. Plant Biol. 2011; 62 (21275647): 549-56610.1146/annurev-arplant-042110-103814Crossref PubMed Scopus (225) Google Scholar, 47Weng J.-K. Philippe R.N. Noel J.P. The rise of chemodiversity in plants.Science. 2012; 336 (22745420): 1667-167010.1126/science.1217411Crossref PubMed Scopus (187) Google Scholar48Bathe U. Tissier A. Cytochrome P450 enzymes: a driving force of plant diterpene diversity.Phytochemistry. 2019; 161 (30733060): 149-16210.1016/j.phytochem.2018.12.003Crossref PubMed Scopus (17) Google Scholar), there are some examples of evolutionary diversification of primary metabolic pathways, especially at the interface between primary and specialized metabolism (49Maeda H.A. Evolutionary diversification of primary metabolism and its contribution to plant chemical diversity.Front. Plant Sci. 2019; 10 (31354760): 88110.3389/fpls.2019.00881Crossref PubMed Scopus (8) Google Scholar). Exploring and harnessing such relatively-rare but key evolutionary innovations of plant metabolism will provide useful tools and strategies to optimize plant primary metabolism in coordination with downstream specialized metabolic pathways, in order to achieve efficient production of plant natural products in carefully-selected plant hosts. Despite the general conservation of primary metabolic pathways among different kingdoms of life, some of them are unique in plants, which likely contributed to the tremendous chemical diversity seen in the plant kingdom today. Understanding such fundamental differences provides a critical basis for constructing plant chemical production platforms through metabolic engineering. Here, I highlight prominent examples found in primary metabolic pathways that support two major classes of plant natural products, terpenoid (isoprenoid) and phenylpropanoid compounds. Isopentenyl diphosphate (IPP), 2The abbreviations used are: IPPisopentenyl diphosphateMVAmevalonateDMAPPdimethylallyl diphosphateDMAPdimethylallyl phosphateMEP2-C-methyl-d-erythritol 4-phosphateMPDCmevalonate diphosphate decarboxylasePMKphosphomevalonate kinaseERendoplasmic reticulumIDIIPP:DMAPP isomeraseDXP1-deoxy-d-xylulose 5-phosphateDXRDXP reductaseDXSDXP synthaseHMBPP4-hydroxy-3-methyl-butenyl 1-diphosphateMEcPP2-C-methyl-d-erythritol-2,4-cyclodiphosphateHMG–CoA3-hydroxy-3-methylglutaryl–CoAHMGRHMG–CoA reductaseMVPmevalonate 5-phosphatePMDphosphomevalonate decarboxylaseIPisopentenyl phosphateIPKisopentenyl phosphate kinaseCMchorismate mutaseHDSHMBPP synthaseHDRHMBPP reductasePPA-ATprephenate aminotransferaseADTarogenate dehydratasePDTprephenate dehydratasePPY-ATphenylpyruvate aminotransferaseASanthranilate synthaseTyrAaarogenate TyrA dehydrogenasencTyrAanoncanonical TyrAaPheHPhe hydroxylaseTyrApprephenate TyrA dehydrogenaseIPMSisopropylmalate synthase3MOB3-methyl-2-oxobutanoate4MOP4-methyl-2-oxopropanoate. and its allylic isomer dimethylallyl diphosphate (DMAPP), is the precursor and building blocks of diverse isoprenoid compounds, such as sterols (e.g. cholesterols), dolichol, and quinones (e.g. ubiquinone). In plants, IPP and DMAPP are also used to synthesize photosynthetic pigments (i.e. chlorophylls and carotenoids) and quinones (i.e. plastoquinone and phylloquinone), plant hormones (e.g. gibberellins, brassinosteroids, and abscisic acid), rubbers, isoprene, mono- and sesquiterpene volatiles, and diverse di- and tri-terpenoids (50Rodríguez-Concepción M. Boronat A. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.Curr. Opin. Plant Biol. 2015; 25 (25909859): 17-2210.1016/j.pbi.2015.04.001Crossref PubMed Scopus (59) Google Scholar51Tholl D. Biosynthesis and biological functions of terpenoids in plants.Adv. Biochem. Eng. Biotechnol. 2015; 148 (25583224): 63-10610.1007/10_2014_295PubMed Google Scholar, 52Croteau R. Kutchan T.M. Lewis N.G. Buchanan B.B. Gruissem W. Jones R.L. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD200010.4236/ajmb.2013.32010Google Scholar, 53Gershenzon J. Dudareva N. The function of terpene natural products in the natural world.Nat. Chem. Biol. 2007; 3 (17576428): 408-41410.1038/nchembio.2007.5Crossref PubMed Scopus (1050) Google Scholar54Zi J. Mafu S. Peters R.J. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism.Annu. Rev. Plant Biol. 2014; 65 (24471837): 259-28610.1146/annurev-arplant-050213-035705Crossref PubMed Scopus (135) Google Scholar). IPP (and DMAPP) can be synthesized via two different routes, the mevalonate (MVA) and 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways (Fig. 2) (36Kirby J. Keasling J.D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering.Annu. Rev. Plant Biol. 2009; 60 (19575586): 335-35510.1146/annurev.arplant.043008.091955Crossref PubMed Scopus (302) Google Scholar, 50Rodríguez-Concepción M. Boronat A. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.Curr. Opin. Plant Biol. 2015; 25 (25909859): 17-2210.1016/j.pbi.2015.04.001Crossref PubMed Scopus (59) Google Scholar, 55Vranová E. Coman D. Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis.Annu. Rev. Plant Biol. 2013; 64 (23451776): 665-70010.1146/annurev-arplant-050312-120116Crossref PubMed Scopus (397) Google Scholar). Most organisms have either one of the two pathways: for example, the MVA pathway is present in animals, fungi, and archaea, and the MEP pathway is found in many bacteria, including Escherichia coli and cyanobacteria (56Lombard J. Moreira D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life.Mol. Biol. Evol. 2011; 28 (20651049): 87-9910.1093/molbev/msq177Crossref PubMed Scopus (179) Google Scholar, 57Lange B.M. Rujan T. Martin W. Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (11078528): 13172-1317710.1073/pnas.240454797Crossref PubMed Scopus (580) Google Scholar58Matsuzaki M. Kuroiwa H. Kuroiwa T. Kita K. Nozaki H. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.Mol. Biol. Evol. 2008; 25 (18359776): 1167-117910.1093/molbev/msn064Crossref PubMed Scopus (0) Google Scholar). Notably, however, plants and many algae have both MVA and MEP pathways to synthesize IPP and DMAPP, which support the formation of these diverse isoprenoid compounds in different subcellular compartments (Fig. 2). These two pathways appear to have some but limited metabolic cross-talks (55Vranová E. Coman D. Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis.Annu. Rev. Plant Biol. 2013; 64 (23451776): 665-70010.1146/annurev-arplant-050312-120116Crossref PubMed Scopus (397) Google Scholar, 59Hemmerlin A. Harwood J.L. Bach T.J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?.Prog. Lipid Res. 2012; 51 (22197147): 95-14810.1016/j.plipres.2011.12.001Crossref PubMed Scopus (183) Google Scholar60Kasahara H. Hanada A. Kuzuyama T. Takagi M. Kamiya Y. Yamaguchi S. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis.J. Biol. Chem. 2002; 277 (12228237): 45188-4519410.1074/jbc.M208659200Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 61Schuhr C.A. Radykewicz T. Sagner S. Latzel C. Zenk M.H. Arigoni D. Bacher A. Rohdich F. Eisenreich W. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy.Phytochemistry Rev. 2003; 2: 3-1610.1023/B:PHYT.0000004180.25066.62Crossref Scopus (0) Google Scholar, 62Hemmerlin A. Hoeffler J.-F. Meyer O. Tritsch D. Kagan I.A. Grosdemange-Billiard C. Rohmer M. Bach T.J. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.J. Biol. Chem. 2003; 278 (12736259): 26666-2667610.1074/jbc.M302526200Abstract Full Text Full Text PDF PubMed Scopus (329) Google Scholar63Nagata N. Suzuki M. Yoshida S. Muranaka T. Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the nonmevalonate pathway.Planta. 2002; 216 (12447549): 345-35010.1007/s00425-002-0871-9Crossref PubMed Scopus (0) Google Scholar). Although various isoprenoids, including the plant-derived sesquiterpene artemisinin, have been successfully produced through microbial synthetic biology (12Ro D.-K. Paradise E.M. Ouellet M. Fisher K.J. Newman K.L. Ndungu J.M. Ho K.A. Eachus R.A. Ham T.S. Kirby J. Chang M.C. Withers S.T. Shiba Y. Sarpong R. Keasling J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.Nature. 2006; 440 (16612385): 940-94310.1038/nature04640Crossref" @default.
- W2976843492 created "2019-10-03" @default.
- W2976843492 creator A5040429486 @default.
- W2976843492 date "2019-11-01" @default.
- W2976843492 modified "2023-10-06" @default.
- W2976843492 title "Harnessing evolutionary diversification of primary metabolism for plant synthetic biology" @default.
- W2976843492 cites W1485645722 @default.
- W2976843492 cites W1506654328 @default.
- W2976843492 cites W1525232568 @default.
- W2976843492 cites W1541751404 @default.
- W2976843492 cites W1557863955 @default.
- W2976843492 cites W1607854320 @default.
- W2976843492 cites W1830282417 @default.
- W2976843492 cites W1902958628 @default.
- W2976843492 cites W1964408683 @default.
- W2976843492 cites W1968305636 @default.
- W2976843492 cites W1969109910 @default.
- W2976843492 cites W1971430242 @default.
- W2976843492 cites W1972850993 @default.
- W2976843492 cites W1974833847 @default.
- W2976843492 cites W1975304009 @default.
- W2976843492 cites W1977804344 @default.
- W2976843492 cites W1978268205 @default.
- W2976843492 cites W1984725847 @default.
- W2976843492 cites W1987382391 @default.
- W2976843492 cites W1989716780 @default.
- W2976843492 cites W1990226486 @default.
- W2976843492 cites W1990449371 @default.
- W2976843492 cites W1992495932 @default.
- W2976843492 cites W1992751983 @default.
- W2976843492 cites W1993646374 @default.
- W2976843492 cites W1998369603 @default.
- W2976843492 cites W1999346174 @default.
- W2976843492 cites W2005204920 @default.
- W2976843492 cites W2006884261 @default.
- W2976843492 cites W2008113589 @default.
- W2976843492 cites W2008843491 @default.
- W2976843492 cites W2008967391 @default.
- W2976843492 cites W2009345320 @default.
- W2976843492 cites W2009753346 @default.
- W2976843492 cites W2011945340 @default.
- W2976843492 cites W2012977733 @default.
- W2976843492 cites W2013923223 @default.
- W2976843492 cites W2014117602 @default.
- W2976843492 cites W2016185554 @default.
- W2976843492 cites W2021241856 @default.
- W2976843492 cites W2021565596 @default.
- W2976843492 cites W2021738855 @default.
- W2976843492 cites W2021928977 @default.
- W2976843492 cites W2021933218 @default.
- W2976843492 cites W2024426942 @default.
- W2976843492 cites W2026688176 @default.
- W2976843492 cites W2026942513 @default.
- W2976843492 cites W2028778151 @default.
- W2976843492 cites W2029446133 @default.
- W2976843492 cites W2030129555 @default.
- W2976843492 cites W2031150004 @default.
- W2976843492 cites W2031873577 @default.
- W2976843492 cites W2037391176 @default.
- W2976843492 cites W2040181554 @default.
- W2976843492 cites W2042599561 @default.
- W2976843492 cites W2043165163 @default.
- W2976843492 cites W2043446524 @default.
- W2976843492 cites W2043944253 @default.
- W2976843492 cites W2045569291 @default.
- W2976843492 cites W2046094044 @default.
- W2976843492 cites W2047225939 @default.
- W2976843492 cites W2048710714 @default.
- W2976843492 cites W2049548112 @default.
- W2976843492 cites W2049765588 @default.
- W2976843492 cites W2049839234 @default.
- W2976843492 cites W2050852246 @default.
- W2976843492 cites W2052518696 @default.
- W2976843492 cites W2052631568 @default.
- W2976843492 cites W2056461155 @default.
- W2976843492 cites W2059175526 @default.
- W2976843492 cites W2062382198 @default.
- W2976843492 cites W2064488173 @default.
- W2976843492 cites W2064713599 @default.
- W2976843492 cites W2064848205 @default.
- W2976843492 cites W2067041321 @default.
- W2976843492 cites W2067279194 @default.
- W2976843492 cites W2067812441 @default.
- W2976843492 cites W2068293364 @default.
- W2976843492 cites W2069123601 @default.
- W2976843492 cites W2071405389 @default.
- W2976843492 cites W2071654564 @default.
- W2976843492 cites W2072847924 @default.
- W2976843492 cites W2073936714 @default.
- W2976843492 cites W2075579534 @default.
- W2976843492 cites W2077640503 @default.
- W2976843492 cites W2079510180 @default.
- W2976843492 cites W2080251413 @default.
- W2976843492 cites W2080776779 @default.
- W2976843492 cites W2081516812 @default.
- W2976843492 cites W2083193220 @default.
- W2976843492 cites W2083351257 @default.
- W2976843492 cites W2083393849 @default.