Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977053669> ?p ?o ?g. }
- W2977053669 endingPage "2674" @default.
- W2977053669 startingPage "2665" @default.
- W2977053669 abstract "Background Chiari-like malformation (CM) is a complex malformation of the skull and cranial cervical vertebrae that potentially results in pain and secondary syringomyelia (SM). Chiari-like malformation-associated pain (CM-P) can be challenging to diagnose. We propose a machine learning approach to characterize morphological changes in dogs that may or may not be apparent to human observers. This data-driven approach can remove potential bias (or blindness) that may be produced by a hypothesis-driven expert observer approach. Hypothesis/Objectives To understand neuromorphological change and to identify image-based biomarkers in dogs with CM-P and symptomatic SM (SM-S) using a novel machine learning approach, with the aim of increasing the understanding of these disorders. Animals Thirty-two client-owned Cavalier King Charles Spaniels (CKCSs; 11 controls, 10 CM-P, 11 SM-S). Methods Retrospective study using T2-weighted midsagittal Digital Imaging and Communications in Medicine (DICOM) anonymized images, which then were mapped to images of an average clinically normal CKCS reference using Demons image registration. Key deformation features were automatically selected from the resulting deformation maps. A kernelized support vector machine was used for classifying characteristic localized changes in morphology. Results Candidate biomarkers were identified with receiver operating characteristic curves with area under the curve (AUC) of 0.78 (sensitivity 82%; specificity 69%) for the CM-P biomarkers collectively and an AUC of 0.82 (sensitivity, 93%; specificity, 67%) for the SM-S biomarkers, collectively. Conclusions and clinical importance Machine learning techniques can assist CM/SM diagnosis and facilitate understanding of abnormal morphology location with the potential to be applied to a variety of breeds and conformational diseases." @default.
- W2977053669 created "2019-10-03" @default.
- W2977053669 creator A5027005103 @default.
- W2977053669 creator A5064537633 @default.
- W2977053669 creator A5083168999 @default.
- W2977053669 creator A5088669610 @default.
- W2977053669 date "2019-09-24" @default.
- W2977053669 modified "2023-10-16" @default.
- W2977053669 title "Using machine learning to understand neuromorphological change and image‐based biomarker identification in Cavalier King Charles Spaniels with Chiari‐like malformation‐associated pain and syringomyelia" @default.
- W2977053669 cites W1878225210 @default.
- W2977053669 cites W1886170093 @default.
- W2977053669 cites W1977218989 @default.
- W2977053669 cites W1982082982 @default.
- W2977053669 cites W1990885164 @default.
- W2977053669 cites W2029434445 @default.
- W2977053669 cites W2031667116 @default.
- W2977053669 cites W2034072733 @default.
- W2977053669 cites W2036081112 @default.
- W2977053669 cites W2040519706 @default.
- W2977053669 cites W2068804666 @default.
- W2977053669 cites W2072026441 @default.
- W2977053669 cites W2082198463 @default.
- W2977053669 cites W2086913760 @default.
- W2977053669 cites W2124355073 @default.
- W2977053669 cites W2153639245 @default.
- W2977053669 cites W2158167845 @default.
- W2977053669 cites W2159543062 @default.
- W2977053669 cites W2160829192 @default.
- W2977053669 cites W2162624354 @default.
- W2977053669 cites W2177974314 @default.
- W2977053669 cites W2184732470 @default.
- W2977053669 cites W2298827991 @default.
- W2977053669 cites W2303084721 @default.
- W2977053669 cites W2506078057 @default.
- W2977053669 cites W2579962939 @default.
- W2977053669 cites W2580967295 @default.
- W2977053669 cites W2754784070 @default.
- W2977053669 cites W2770229007 @default.
- W2977053669 cites W2903274308 @default.
- W2977053669 cites W2936555784 @default.
- W2977053669 doi "https://doi.org/10.1111/jvim.15621" @default.
- W2977053669 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6872629" @default.
- W2977053669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31552689" @default.
- W2977053669 hasPublicationYear "2019" @default.
- W2977053669 type Work @default.
- W2977053669 sameAs 2977053669 @default.
- W2977053669 citedByCount "10" @default.
- W2977053669 countsByYear W29770536692020 @default.
- W2977053669 countsByYear W29770536692021 @default.
- W2977053669 countsByYear W29770536692022 @default.
- W2977053669 countsByYear W29770536692023 @default.
- W2977053669 crossrefType "journal-article" @default.
- W2977053669 hasAuthorship W2977053669A5027005103 @default.
- W2977053669 hasAuthorship W2977053669A5064537633 @default.
- W2977053669 hasAuthorship W2977053669A5083168999 @default.
- W2977053669 hasAuthorship W2977053669A5088669610 @default.
- W2977053669 hasBestOaLocation W29770536691 @default.
- W2977053669 hasConcept C119857082 @default.
- W2977053669 hasConcept C12267149 @default.
- W2977053669 hasConcept C126322002 @default.
- W2977053669 hasConcept C126838900 @default.
- W2977053669 hasConcept C143409427 @default.
- W2977053669 hasConcept C154945302 @default.
- W2977053669 hasConcept C169258074 @default.
- W2977053669 hasConcept C2777836068 @default.
- W2977053669 hasConcept C2781149351 @default.
- W2977053669 hasConcept C41008148 @default.
- W2977053669 hasConcept C58471807 @default.
- W2977053669 hasConcept C71924100 @default.
- W2977053669 hasConceptScore W2977053669C119857082 @default.
- W2977053669 hasConceptScore W2977053669C12267149 @default.
- W2977053669 hasConceptScore W2977053669C126322002 @default.
- W2977053669 hasConceptScore W2977053669C126838900 @default.
- W2977053669 hasConceptScore W2977053669C143409427 @default.
- W2977053669 hasConceptScore W2977053669C154945302 @default.
- W2977053669 hasConceptScore W2977053669C169258074 @default.
- W2977053669 hasConceptScore W2977053669C2777836068 @default.
- W2977053669 hasConceptScore W2977053669C2781149351 @default.
- W2977053669 hasConceptScore W2977053669C41008148 @default.
- W2977053669 hasConceptScore W2977053669C58471807 @default.
- W2977053669 hasConceptScore W2977053669C71924100 @default.
- W2977053669 hasIssue "6" @default.
- W2977053669 hasLocation W29770536691 @default.
- W2977053669 hasLocation W29770536692 @default.
- W2977053669 hasLocation W29770536693 @default.
- W2977053669 hasOpenAccess W2977053669 @default.
- W2977053669 hasPrimaryLocation W29770536691 @default.
- W2977053669 hasRelatedWork W2979979539 @default.
- W2977053669 hasRelatedWork W2985924212 @default.
- W2977053669 hasRelatedWork W3004897296 @default.
- W2977053669 hasRelatedWork W3127425528 @default.
- W2977053669 hasRelatedWork W3174196512 @default.
- W2977053669 hasRelatedWork W3195168932 @default.
- W2977053669 hasRelatedWork W3195610867 @default.
- W2977053669 hasRelatedWork W4205958290 @default.
- W2977053669 hasRelatedWork W4311106074 @default.
- W2977053669 hasRelatedWork W4321636153 @default.
- W2977053669 hasVolume "33" @default.