Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977096668> ?p ?o ?g. }
- W2977096668 endingPage "109567" @default.
- W2977096668 startingPage "109567" @default.
- W2977096668 abstract "A detailed and global quantitative assessment of the distribution of pyrogenic carbon (PyC) in soils remains unaccounted due to the current lack of unbiased methods for its routine quantification in environmental samples. Conventional oxidation with potassium dichromate has been reported as a useful approach for the determination of recalcitrant C in soils. However, its inaccuracy due to the presence of residual non-polar but still non-PyC requires additional analysis by 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, which is expensive and time consuming. The goal of this work is to examine the possibility of applying infrared (IR) spectroscopy as a potential alternative. Different soil type samples (paddy soil, Histic Humaquept, Leptosol and Cambisol) have been used. The soils were digested with potassium dichromate to determine the PyC content in environmental samples. Partial Least Squares (PLS) regression was used to build calibration models to predict PyC from IR spectra. A set of artificially produced samples rich in PyC was used as reference to observe in detail the IR bands derived from aromatic structures resistant to dichromate oxidation, representing black carbon. The results showed successful PLS forecasting of PyC in the different samples by using spectra in the 1800–400 cm−1 range. This lead to significant (P < 0.05) cross-validation coefficients for PyC, determined as the aryl C content of the oxidized residue. The Variable Importance for Projection (VIP) traces for the corresponding PLS regression models plotted in the whole IR range indicates the extent to which each IR band contributes to explain the aryl C and PyC contents. In fact, forecasting PyC in soils requires information from several IR regions. In addition to the expected IR bands corresponding to aryl C, other bands are informing about the patterns of oxygen-containing functional groups and the mineralogical composition characteristic of the soils with greater black carbon storage capacity. The VIP traces of the charred biomass samples confirm that aromatic bands (1620 and 1510 cm−1) are the most important in the prediction model for PyC-rich samples. These facts suggest that the mid-IR spectroscopy could be a potential tool to estimate the black carbon." @default.
- W2977096668 created "2019-10-03" @default.
- W2977096668 creator A5013681875 @default.
- W2977096668 creator A5028916208 @default.
- W2977096668 creator A5035271153 @default.
- W2977096668 creator A5051628221 @default.
- W2977096668 creator A5051642022 @default.
- W2977096668 date "2019-12-01" @default.
- W2977096668 modified "2023-10-16" @default.
- W2977096668 title "Quantitative forecasting black (pyrogenic) carbon in soils by chemometric analysis of infrared spectra" @default.
- W2977096668 cites W1949462709 @default.
- W2977096668 cites W1973874914 @default.
- W2977096668 cites W1982431340 @default.
- W2977096668 cites W1985586696 @default.
- W2977096668 cites W1993144192 @default.
- W2977096668 cites W1999118605 @default.
- W2977096668 cites W2004216580 @default.
- W2977096668 cites W2014486784 @default.
- W2977096668 cites W2038287838 @default.
- W2977096668 cites W2047693271 @default.
- W2977096668 cites W2048016791 @default.
- W2977096668 cites W2056967342 @default.
- W2977096668 cites W2063803762 @default.
- W2977096668 cites W2075673711 @default.
- W2977096668 cites W2076319966 @default.
- W2977096668 cites W2082403723 @default.
- W2977096668 cites W2086954580 @default.
- W2977096668 cites W2100367157 @default.
- W2977096668 cites W2100788065 @default.
- W2977096668 cites W2112931328 @default.
- W2977096668 cites W2142635246 @default.
- W2977096668 cites W2172133867 @default.
- W2977096668 cites W2589325076 @default.
- W2977096668 cites W2596815705 @default.
- W2977096668 cites W2803867999 @default.
- W2977096668 cites W2885633929 @default.
- W2977096668 cites W2887514966 @default.
- W2977096668 cites W2928269728 @default.
- W2977096668 cites W2938850315 @default.
- W2977096668 cites W2951860947 @default.
- W2977096668 doi "https://doi.org/10.1016/j.jenvman.2019.109567" @default.
- W2977096668 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31569023" @default.
- W2977096668 hasPublicationYear "2019" @default.
- W2977096668 type Work @default.
- W2977096668 sameAs 2977096668 @default.
- W2977096668 citedByCount "14" @default.
- W2977096668 countsByYear W29770966682020 @default.
- W2977096668 countsByYear W29770966682021 @default.
- W2977096668 countsByYear W29770966682023 @default.
- W2977096668 crossrefType "journal-article" @default.
- W2977096668 hasAuthorship W2977096668A5013681875 @default.
- W2977096668 hasAuthorship W2977096668A5028916208 @default.
- W2977096668 hasAuthorship W2977096668A5035271153 @default.
- W2977096668 hasAuthorship W2977096668A5051628221 @default.
- W2977096668 hasAuthorship W2977096668A5051642022 @default.
- W2977096668 hasBestOaLocation W29770966682 @default.
- W2977096668 hasConcept C105795698 @default.
- W2977096668 hasConcept C107872376 @default.
- W2977096668 hasConcept C113196181 @default.
- W2977096668 hasConcept C153642686 @default.
- W2977096668 hasConcept C158787203 @default.
- W2977096668 hasConcept C159390177 @default.
- W2977096668 hasConcept C159750122 @default.
- W2977096668 hasConcept C176933379 @default.
- W2977096668 hasConcept C178790620 @default.
- W2977096668 hasConcept C185592680 @default.
- W2977096668 hasConcept C22354355 @default.
- W2977096668 hasConcept C2776501588 @default.
- W2977096668 hasConcept C2777567952 @default.
- W2977096668 hasConcept C33923547 @default.
- W2977096668 hasConcept C39432304 @default.
- W2977096668 hasConcept C44038986 @default.
- W2977096668 hasConcept C50516716 @default.
- W2977096668 hasConceptScore W2977096668C105795698 @default.
- W2977096668 hasConceptScore W2977096668C107872376 @default.
- W2977096668 hasConceptScore W2977096668C113196181 @default.
- W2977096668 hasConceptScore W2977096668C153642686 @default.
- W2977096668 hasConceptScore W2977096668C158787203 @default.
- W2977096668 hasConceptScore W2977096668C159390177 @default.
- W2977096668 hasConceptScore W2977096668C159750122 @default.
- W2977096668 hasConceptScore W2977096668C176933379 @default.
- W2977096668 hasConceptScore W2977096668C178790620 @default.
- W2977096668 hasConceptScore W2977096668C185592680 @default.
- W2977096668 hasConceptScore W2977096668C22354355 @default.
- W2977096668 hasConceptScore W2977096668C2776501588 @default.
- W2977096668 hasConceptScore W2977096668C2777567952 @default.
- W2977096668 hasConceptScore W2977096668C33923547 @default.
- W2977096668 hasConceptScore W2977096668C39432304 @default.
- W2977096668 hasConceptScore W2977096668C44038986 @default.
- W2977096668 hasConceptScore W2977096668C50516716 @default.
- W2977096668 hasFunder F4320321837 @default.
- W2977096668 hasFunder F4320334779 @default.
- W2977096668 hasLocation W29770966681 @default.
- W2977096668 hasLocation W29770966682 @default.
- W2977096668 hasLocation W29770966683 @default.
- W2977096668 hasLocation W29770966684 @default.
- W2977096668 hasOpenAccess W2977096668 @default.
- W2977096668 hasPrimaryLocation W29770966681 @default.