Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977177548> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2977177548 abstract "Modeled along the truncated approach in Panigrahi (2016), selection-adjusted inference in a Bayesian regime is based on a selective posterior. Such a posterior is determined together by a generative model imposed on data and the selection event that enforces a truncation on the assumed law. The effective difference between the selective posterior and the usual Bayesian framework is reflected in the use of a truncated likelihood. The normalizer of the truncated law in the adjusted framework is the probability of the selection event; this is typically intractable and it leads to the computational bottleneck in sampling from such a posterior. The current work lays out a primal-dual approach of solving an approximating optimization problem to provide valid post-selective Bayesian inference. The selection procedures are posed as data-queries that solve a randomized version of a convex learning program which have the advantage of preserving more left-over information for inference. We propose a randomization scheme under which the optimization has separable constraints that result in a partially separable objective in lower dimensions for many commonly used selective queries to approximate the otherwise intractable selective posterior. We show that the approximating optimization under a Gaussian randomization gives a valid exponential rate of decay for the selection probability on a large deviation scale. We offer a primal-dual method to solve the optimization problem leading to an approximate posterior; this allows us to exploit the usual merits of a Bayesian machinery in both low and high dimensional regimes where the underlying signal is effectively sparse. We show that the adjusted estimates empirically demonstrate better frequentist properties in comparison to the unadjusted estimates based on the usual posterior, when applied to a wide range of constrained, convex data queries." @default.
- W2977177548 created "2019-10-03" @default.
- W2977177548 creator A5021087479 @default.
- W2977177548 creator A5056596793 @default.
- W2977177548 date "2017-03-17" @default.
- W2977177548 modified "2023-09-27" @default.
- W2977177548 title "Scalable methods for Bayesian selective inference" @default.
- W2977177548 cites W1494586070 @default.
- W2977177548 cites W1502184303 @default.
- W2977177548 cites W1533942137 @default.
- W2977177548 cites W1613468661 @default.
- W2977177548 cites W1719994557 @default.
- W2977177548 cites W1736823781 @default.
- W2977177548 cites W1999974018 @default.
- W2977177548 cites W2001473319 @default.
- W2977177548 cites W2059120410 @default.
- W2977177548 cites W2068535610 @default.
- W2977177548 cites W2099932489 @default.
- W2977177548 cites W2111607888 @default.
- W2977177548 cites W2112380340 @default.
- W2977177548 cites W2122825543 @default.
- W2977177548 cites W2166851633 @default.
- W2977177548 cites W2204774351 @default.
- W2977177548 cites W2267673279 @default.
- W2977177548 cites W2342127666 @default.
- W2977177548 cites W2503952561 @default.
- W2977177548 cites W2565330167 @default.
- W2977177548 cites W2604157455 @default.
- W2977177548 cites W2897038751 @default.
- W2977177548 cites W3031742932 @default.
- W2977177548 cites W3159982138 @default.
- W2977177548 hasPublicationYear "2017" @default.
- W2977177548 type Work @default.
- W2977177548 sameAs 2977177548 @default.
- W2977177548 citedByCount "1" @default.
- W2977177548 countsByYear W29771775482018 @default.
- W2977177548 crossrefType "posted-content" @default.
- W2977177548 hasAuthorship W2977177548A5021087479 @default.
- W2977177548 hasAuthorship W2977177548A5056596793 @default.
- W2977177548 hasConcept C107673813 @default.
- W2977177548 hasConcept C11413529 @default.
- W2977177548 hasConcept C126255220 @default.
- W2977177548 hasConcept C154945302 @default.
- W2977177548 hasConcept C160234255 @default.
- W2977177548 hasConcept C2776214188 @default.
- W2977177548 hasConcept C33923547 @default.
- W2977177548 hasConcept C41008148 @default.
- W2977177548 hasConcept C57830394 @default.
- W2977177548 hasConceptScore W2977177548C107673813 @default.
- W2977177548 hasConceptScore W2977177548C11413529 @default.
- W2977177548 hasConceptScore W2977177548C126255220 @default.
- W2977177548 hasConceptScore W2977177548C154945302 @default.
- W2977177548 hasConceptScore W2977177548C160234255 @default.
- W2977177548 hasConceptScore W2977177548C2776214188 @default.
- W2977177548 hasConceptScore W2977177548C33923547 @default.
- W2977177548 hasConceptScore W2977177548C41008148 @default.
- W2977177548 hasConceptScore W2977177548C57830394 @default.
- W2977177548 hasLocation W29771775481 @default.
- W2977177548 hasOpenAccess W2977177548 @default.
- W2977177548 hasPrimaryLocation W29771775481 @default.
- W2977177548 hasRelatedWork W1445145044 @default.
- W2977177548 hasRelatedWork W1905910222 @default.
- W2977177548 hasRelatedWork W2135791417 @default.
- W2977177548 hasRelatedWork W2137592701 @default.
- W2977177548 hasRelatedWork W2410661279 @default.
- W2977177548 hasRelatedWork W2587608575 @default.
- W2977177548 hasRelatedWork W2607502872 @default.
- W2977177548 hasRelatedWork W2883765526 @default.
- W2977177548 hasRelatedWork W2897570842 @default.
- W2977177548 hasRelatedWork W2905462132 @default.
- W2977177548 hasRelatedWork W2916154382 @default.
- W2977177548 hasRelatedWork W2949568277 @default.
- W2977177548 hasRelatedWork W2951838364 @default.
- W2977177548 hasRelatedWork W3087149571 @default.
- W2977177548 hasRelatedWork W3129092855 @default.
- W2977177548 hasRelatedWork W3148438982 @default.
- W2977177548 hasRelatedWork W3175846333 @default.
- W2977177548 hasRelatedWork W3185694531 @default.
- W2977177548 hasRelatedWork W3189168106 @default.
- W2977177548 hasRelatedWork W2988743537 @default.
- W2977177548 isParatext "false" @default.
- W2977177548 isRetracted "false" @default.
- W2977177548 magId "2977177548" @default.
- W2977177548 workType "article" @default.