Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977247440> ?p ?o ?g. }
- W2977247440 endingPage "309" @default.
- W2977247440 startingPage "287" @default.
- W2977247440 abstract "Engineering systems are currently plagued by various complexities and uncertainties. Metaheuristics have emerged as an essential tool for effective engineering design and operations. Nevertheless, conventional metaheuristics still struggle to reach optimality in the face of highly complex engineering problems. Aiming to further boost the performance of conventional metaheuristics, strategies such as hybridization and various enhancements have been added into the existing solution methods. In this work, swarm intelligence techniques were employed to solve the real-world, large-scale biofuel supply chain problem. Additionally, the supply chain problem considered in this chapter is multiobjective (MO) in nature. Comparative analysis was then performed on the swarm techniques. To further enhance the search capability of the best solution method (GSA), the Lévy flight component from the Cuckoo Search (CS) algorithm was incorporated into the Gravitational Search Algorithm (GSA) technique; developing the novel Lévy-GSA technique. Measurement metrics were then utilized to analyze the results." @default.
- W2977247440 created "2019-10-10" @default.
- W2977247440 creator A5079168872 @default.
- W2977247440 creator A5089550455 @default.
- W2977247440 date "2020-01-01" @default.
- W2977247440 modified "2023-09-25" @default.
- W2977247440 title "Lévy-Enhanced Swarm Intelligence for Optimizing a Multiobjective Biofuel Supply Chain" @default.
- W2977247440 cites W1978627504 @default.
- W2977247440 cites W1990457952 @default.
- W2977247440 cites W1997383668 @default.
- W2977247440 cites W1999144141 @default.
- W2977247440 cites W2005244017 @default.
- W2977247440 cites W2007833876 @default.
- W2977247440 cites W2008170547 @default.
- W2977247440 cites W2016017859 @default.
- W2977247440 cites W2018021847 @default.
- W2977247440 cites W2039377679 @default.
- W2977247440 cites W2040428697 @default.
- W2977247440 cites W2041061756 @default.
- W2977247440 cites W2043632015 @default.
- W2977247440 cites W2049078644 @default.
- W2977247440 cites W2051290886 @default.
- W2977247440 cites W2061892916 @default.
- W2977247440 cites W2071371597 @default.
- W2977247440 cites W2080128844 @default.
- W2977247440 cites W2085966040 @default.
- W2977247440 cites W2087760458 @default.
- W2977247440 cites W2090797242 @default.
- W2977247440 cites W2117360592 @default.
- W2977247440 cites W2117395112 @default.
- W2977247440 cites W2181528415 @default.
- W2977247440 cites W2194389425 @default.
- W2977247440 cites W2197809400 @default.
- W2977247440 cites W2290044485 @default.
- W2977247440 cites W244667546 @default.
- W2977247440 cites W2476838587 @default.
- W2977247440 cites W2501004302 @default.
- W2977247440 cites W2528014376 @default.
- W2977247440 cites W2557425859 @default.
- W2977247440 cites W2594859510 @default.
- W2977247440 cites W2743998393 @default.
- W2977247440 cites W2751418354 @default.
- W2977247440 cites W2754313341 @default.
- W2977247440 cites W2783572245 @default.
- W2977247440 cites W292489513 @default.
- W2977247440 cites W4253820899 @default.
- W2977247440 cites W4256445904 @default.
- W2977247440 cites W758506392 @default.
- W2977247440 cites W971933325 @default.
- W2977247440 doi "https://doi.org/10.4018/978-1-7998-1216-6.ch012" @default.
- W2977247440 hasPublicationYear "2020" @default.
- W2977247440 type Work @default.
- W2977247440 sameAs 2977247440 @default.
- W2977247440 citedByCount "3" @default.
- W2977247440 countsByYear W29772474402020 @default.
- W2977247440 countsByYear W29772474402021 @default.
- W2977247440 countsByYear W29772474402022 @default.
- W2977247440 crossrefType "book-chapter" @default.
- W2977247440 hasAuthorship W2977247440A5079168872 @default.
- W2977247440 hasAuthorship W2977247440A5089550455 @default.
- W2977247440 hasConcept C108713360 @default.
- W2977247440 hasConcept C109718341 @default.
- W2977247440 hasConcept C11413529 @default.
- W2977247440 hasConcept C117241572 @default.
- W2977247440 hasConcept C119487961 @default.
- W2977247440 hasConcept C126255220 @default.
- W2977247440 hasConcept C139502532 @default.
- W2977247440 hasConcept C144133560 @default.
- W2977247440 hasConcept C154945302 @default.
- W2977247440 hasConcept C162853370 @default.
- W2977247440 hasConcept C181335050 @default.
- W2977247440 hasConcept C33923547 @default.
- W2977247440 hasConcept C41008148 @default.
- W2977247440 hasConcept C85617194 @default.
- W2977247440 hasConceptScore W2977247440C108713360 @default.
- W2977247440 hasConceptScore W2977247440C109718341 @default.
- W2977247440 hasConceptScore W2977247440C11413529 @default.
- W2977247440 hasConceptScore W2977247440C117241572 @default.
- W2977247440 hasConceptScore W2977247440C119487961 @default.
- W2977247440 hasConceptScore W2977247440C126255220 @default.
- W2977247440 hasConceptScore W2977247440C139502532 @default.
- W2977247440 hasConceptScore W2977247440C144133560 @default.
- W2977247440 hasConceptScore W2977247440C154945302 @default.
- W2977247440 hasConceptScore W2977247440C162853370 @default.
- W2977247440 hasConceptScore W2977247440C181335050 @default.
- W2977247440 hasConceptScore W2977247440C33923547 @default.
- W2977247440 hasConceptScore W2977247440C41008148 @default.
- W2977247440 hasConceptScore W2977247440C85617194 @default.
- W2977247440 hasLocation W29772474401 @default.
- W2977247440 hasOpenAccess W2977247440 @default.
- W2977247440 hasPrimaryLocation W29772474401 @default.
- W2977247440 hasRelatedWork W147182690 @default.
- W2977247440 hasRelatedWork W2077710829 @default.
- W2977247440 hasRelatedWork W2091489981 @default.
- W2977247440 hasRelatedWork W2148805260 @default.
- W2977247440 hasRelatedWork W2160585384 @default.
- W2977247440 hasRelatedWork W2969294166 @default.
- W2977247440 hasRelatedWork W2977247440 @default.