Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977407310> ?p ?o ?g. }
- W2977407310 endingPage "117693431987992" @default.
- W2977407310 startingPage "117693431987992" @default.
- W2977407310 abstract "Background: Increasing evidence has indicated that protein-protein interactions (PPIs) play important roles in various aspects of the structural and functional organization of a cell. Thus, continuing to uncover potential PPIs is an important topic in the biomedical domain. Although various feature extraction methods with machine learning approaches have enhanced the prediction of PPIs. There remains room for improvement by developing novel and effective feature extraction methods and classifier approaches to identify PPIs. Method: In this study, we proposed a sequence-based feature extraction method called LCPSSMMF, which combined local coding position-specific scoring matrix (PSSM) with multifeatures fusion. First, we used a novel local coding method based on PSSM to build a new PSSM (CPSSM); the advantage of this method is that it incorporated global and local feature extraction, which can account for the interactions between residues in both continuous and discontinuous regions of amino acid sequences. Second, we adopted 2 different feature extraction methods (Local Average Group [LAG] and Bigram Probability [BP]) to capture multiple key feature information by employing the evolutionary information embedded in the CPSSM matrix. Finally, feature vectors were acquired by using multifeatures fusion method. Result: To evaluate the performance of the proposed feature extraction approach, we employed support vector machine (SVM) as a prediction classifier and applied this method to yeast and human PPI datasets. The prediction accuracies of LCPSSMMF were 93.43% and 90.41% on the yeast and human datasets, respectively. Moreover, we also compared the proposed method with the previous sequence-based approaches on the yeast datasets by using the same SVM classifier. The experimental results indicated that the performance of LCPSSMMF significantly exceeded that of several other state-of-the-art methods. It is proven that the LCPSSMMF approach can capture more local and global discriminatory information than almost all previous methods and can function remarkably well in identifying PPIs. To facilitate extensive research in future proteomics studies, we developed a LCPSSMMFSVM server, which is freely available for academic use at http://219.219.62.123:8888/LCPSSMMFSVM ." @default.
- W2977407310 created "2019-10-10" @default.
- W2977407310 creator A5004841618 @default.
- W2977407310 creator A5025079159 @default.
- W2977407310 creator A5032958345 @default.
- W2977407310 creator A5045745317 @default.
- W2977407310 date "2019-01-01" @default.
- W2977407310 modified "2023-10-14" @default.
- W2977407310 title "An Efficient Feature Extraction Technique Based on Local Coding PSSM and Multifeatures Fusion for Predicting Protein-Protein Interactions" @default.
- W2977407310 cites W1486817521 @default.
- W2977407310 cites W1950194999 @default.
- W2977407310 cites W1990212480 @default.
- W2977407310 cites W1994801829 @default.
- W2977407310 cites W2000265519 @default.
- W2977407310 cites W2021312899 @default.
- W2977407310 cites W2037036397 @default.
- W2977407310 cites W2040941311 @default.
- W2977407310 cites W2072805285 @default.
- W2977407310 cites W2084619201 @default.
- W2977407310 cites W2086976849 @default.
- W2977407310 cites W2087322782 @default.
- W2977407310 cites W2098201295 @default.
- W2977407310 cites W2132582966 @default.
- W2977407310 cites W2143720865 @default.
- W2977407310 cites W2151230734 @default.
- W2977407310 cites W2152705149 @default.
- W2977407310 cites W2152991541 @default.
- W2977407310 cites W2160223331 @default.
- W2977407310 cites W2167869241 @default.
- W2977407310 cites W2298224298 @default.
- W2977407310 cites W2299283704 @default.
- W2977407310 cites W2341018731 @default.
- W2977407310 cites W2344144945 @default.
- W2977407310 cites W2396940995 @default.
- W2977407310 cites W2547150868 @default.
- W2977407310 cites W2748479836 @default.
- W2977407310 cites W2767626798 @default.
- W2977407310 cites W2790631817 @default.
- W2977407310 cites W4233751197 @default.
- W2977407310 cites W76924599 @default.
- W2977407310 doi "https://doi.org/10.1177/1176934319879920" @default.
- W2977407310 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6777060" @default.
- W2977407310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31619921" @default.
- W2977407310 hasPublicationYear "2019" @default.
- W2977407310 type Work @default.
- W2977407310 sameAs 2977407310 @default.
- W2977407310 citedByCount "10" @default.
- W2977407310 countsByYear W29774073102020 @default.
- W2977407310 countsByYear W29774073102021 @default.
- W2977407310 countsByYear W29774073102022 @default.
- W2977407310 countsByYear W29774073102023 @default.
- W2977407310 crossrefType "journal-article" @default.
- W2977407310 hasAuthorship W2977407310A5004841618 @default.
- W2977407310 hasAuthorship W2977407310A5025079159 @default.
- W2977407310 hasAuthorship W2977407310A5032958345 @default.
- W2977407310 hasAuthorship W2977407310A5045745317 @default.
- W2977407310 hasBestOaLocation W29774073101 @default.
- W2977407310 hasConcept C105795698 @default.
- W2977407310 hasConcept C115961682 @default.
- W2977407310 hasConcept C119857082 @default.
- W2977407310 hasConcept C12267149 @default.
- W2977407310 hasConcept C124101348 @default.
- W2977407310 hasConcept C153180895 @default.
- W2977407310 hasConcept C154945302 @default.
- W2977407310 hasConcept C179518139 @default.
- W2977407310 hasConcept C33923547 @default.
- W2977407310 hasConcept C41008148 @default.
- W2977407310 hasConcept C52622490 @default.
- W2977407310 hasConcept C53533937 @default.
- W2977407310 hasConcept C87335442 @default.
- W2977407310 hasConcept C95623464 @default.
- W2977407310 hasConceptScore W2977407310C105795698 @default.
- W2977407310 hasConceptScore W2977407310C115961682 @default.
- W2977407310 hasConceptScore W2977407310C119857082 @default.
- W2977407310 hasConceptScore W2977407310C12267149 @default.
- W2977407310 hasConceptScore W2977407310C124101348 @default.
- W2977407310 hasConceptScore W2977407310C153180895 @default.
- W2977407310 hasConceptScore W2977407310C154945302 @default.
- W2977407310 hasConceptScore W2977407310C179518139 @default.
- W2977407310 hasConceptScore W2977407310C33923547 @default.
- W2977407310 hasConceptScore W2977407310C41008148 @default.
- W2977407310 hasConceptScore W2977407310C52622490 @default.
- W2977407310 hasConceptScore W2977407310C53533937 @default.
- W2977407310 hasConceptScore W2977407310C87335442 @default.
- W2977407310 hasConceptScore W2977407310C95623464 @default.
- W2977407310 hasLocation W29774073101 @default.
- W2977407310 hasLocation W29774073102 @default.
- W2977407310 hasLocation W29774073103 @default.
- W2977407310 hasLocation W29774073104 @default.
- W2977407310 hasOpenAccess W2977407310 @default.
- W2977407310 hasPrimaryLocation W29774073101 @default.
- W2977407310 hasRelatedWork W1974108376 @default.
- W2977407310 hasRelatedWork W2005771019 @default.
- W2977407310 hasRelatedWork W2085553065 @default.
- W2977407310 hasRelatedWork W2087874231 @default.
- W2977407310 hasRelatedWork W2126100045 @default.
- W2977407310 hasRelatedWork W2189511392 @default.
- W2977407310 hasRelatedWork W2336974148 @default.