Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977432823> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2977432823 endingPage "435" @default.
- W2977432823 startingPage "427" @default.
- W2977432823 abstract "Time series of count data is not a widely studied research topic. This paper develops Bayesian forecasting method of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. To determine a forecasted value of an observation-driven integer valued autoregressive model, a series of well thought alghoritm needs to be developed, resulting in the use of Bayesian framework. This effective alghoritm sets is then used for the aforementioned calculation for the modelling of time series count data. To get the demanded results, a particle MCMC algorithm for the autoregressive Poisson regression model is introduced in the equation. Two real-life data sets, monthly demand for medicines type X and type Y (2016–2018) are successfully be analysed. We also illustrate that the Bayesian forecasting is more accurate than the corresponding frequentist’s approach." @default.
- W2977432823 created "2019-10-10" @default.
- W2977432823 creator A5037520427 @default.
- W2977432823 creator A5060879587 @default.
- W2977432823 date "2019-01-01" @default.
- W2977432823 modified "2023-09-24" @default.
- W2977432823 title "Bayesian Forecasting for Time Series of Count Data" @default.
- W2977432823 cites W2060364371 @default.
- W2977432823 cites W2117014758 @default.
- W2977432823 doi "https://doi.org/10.1016/j.procs.2019.08.235" @default.
- W2977432823 hasPublicationYear "2019" @default.
- W2977432823 type Work @default.
- W2977432823 sameAs 2977432823 @default.
- W2977432823 citedByCount "4" @default.
- W2977432823 countsByYear W29774328232020 @default.
- W2977432823 countsByYear W29774328232021 @default.
- W2977432823 countsByYear W29774328232023 @default.
- W2977432823 crossrefType "journal-article" @default.
- W2977432823 hasAuthorship W2977432823A5037520427 @default.
- W2977432823 hasAuthorship W2977432823A5060879587 @default.
- W2977432823 hasBestOaLocation W29774328231 @default.
- W2977432823 hasConcept C100906024 @default.
- W2977432823 hasConcept C105795698 @default.
- W2977432823 hasConcept C107673813 @default.
- W2977432823 hasConcept C111350023 @default.
- W2977432823 hasConcept C117236510 @default.
- W2977432823 hasConcept C119857082 @default.
- W2977432823 hasConcept C143724316 @default.
- W2977432823 hasConcept C144024400 @default.
- W2977432823 hasConcept C149782125 @default.
- W2977432823 hasConcept C149923435 @default.
- W2977432823 hasConcept C151406439 @default.
- W2977432823 hasConcept C151730666 @default.
- W2977432823 hasConcept C154945302 @default.
- W2977432823 hasConcept C159877910 @default.
- W2977432823 hasConcept C160234255 @default.
- W2977432823 hasConcept C162376815 @default.
- W2977432823 hasConcept C2908647359 @default.
- W2977432823 hasConcept C33643355 @default.
- W2977432823 hasConcept C33923547 @default.
- W2977432823 hasConcept C41008148 @default.
- W2977432823 hasConcept C73269764 @default.
- W2977432823 hasConcept C86803240 @default.
- W2977432823 hasConceptScore W2977432823C100906024 @default.
- W2977432823 hasConceptScore W2977432823C105795698 @default.
- W2977432823 hasConceptScore W2977432823C107673813 @default.
- W2977432823 hasConceptScore W2977432823C111350023 @default.
- W2977432823 hasConceptScore W2977432823C117236510 @default.
- W2977432823 hasConceptScore W2977432823C119857082 @default.
- W2977432823 hasConceptScore W2977432823C143724316 @default.
- W2977432823 hasConceptScore W2977432823C144024400 @default.
- W2977432823 hasConceptScore W2977432823C149782125 @default.
- W2977432823 hasConceptScore W2977432823C149923435 @default.
- W2977432823 hasConceptScore W2977432823C151406439 @default.
- W2977432823 hasConceptScore W2977432823C151730666 @default.
- W2977432823 hasConceptScore W2977432823C154945302 @default.
- W2977432823 hasConceptScore W2977432823C159877910 @default.
- W2977432823 hasConceptScore W2977432823C160234255 @default.
- W2977432823 hasConceptScore W2977432823C162376815 @default.
- W2977432823 hasConceptScore W2977432823C2908647359 @default.
- W2977432823 hasConceptScore W2977432823C33643355 @default.
- W2977432823 hasConceptScore W2977432823C33923547 @default.
- W2977432823 hasConceptScore W2977432823C41008148 @default.
- W2977432823 hasConceptScore W2977432823C73269764 @default.
- W2977432823 hasConceptScore W2977432823C86803240 @default.
- W2977432823 hasLocation W29774328231 @default.
- W2977432823 hasOpenAccess W2977432823 @default.
- W2977432823 hasPrimaryLocation W29774328231 @default.
- W2977432823 hasRelatedWork W2023174251 @default.
- W2977432823 hasRelatedWork W2039289399 @default.
- W2977432823 hasRelatedWork W2129537379 @default.
- W2977432823 hasRelatedWork W2475003067 @default.
- W2977432823 hasRelatedWork W2588621874 @default.
- W2977432823 hasRelatedWork W2759839044 @default.
- W2977432823 hasRelatedWork W3127154874 @default.
- W2977432823 hasRelatedWork W3135303892 @default.
- W2977432823 hasRelatedWork W375692831 @default.
- W2977432823 hasRelatedWork W4280505828 @default.
- W2977432823 hasVolume "157" @default.
- W2977432823 isParatext "false" @default.
- W2977432823 isRetracted "false" @default.
- W2977432823 magId "2977432823" @default.
- W2977432823 workType "article" @default.