Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977507172> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2977507172 abstract "The development of Named Entity Recognition (NER) in recent years is partially attributed to the availability of annotated ata-sets. Data-sets play a crucial part indeveloping, training, and testing NER algorithms. The need for data-sets becomes more important when adapting the algorithms to new domains. However, domain specific information imposes different challenges on NERs, such as the need for annotating a different set of Named Entity (NE) types (e.g. NE schema) or, more importantly, the need for domain expert annotators. Many domain specific NER use academic paper-sharing platforms as sources for data-sets. Either abstracts or the full texts of publications are extracted from the platforms to construct raw data-sets. These raw data-sets are then annotated by domain experts. However, expert annotation is an expensive process and consumes more resources compared to non-expert annotation. This thesis tackles the problem of adapting NER to new domains and focuses on reducing the resources needed to create domain specific NER. In this thesis, academic paper-sharing portals are used as a source for raw data and also as a source for finding annotators. In other words, paper-sharing platforms are used as a crowdsourcing platform, and the scholars who share their publications are asked to annotate their own work. This thesis uses also active learning (AL) to further reduce the resources needed to develop NER. In the introduced approach, experts submit their papers online. The papers then go through a Natural Language Processing (NLP) pipeline that prepares the papers’ text for annotating. An active learning algorithm, as part of this pipeline, selects the most informative instances to be annotated. The author is then asked to annotate these instances. The developed NER approach is in a consistent loop. The loop is used to produce more annotated resources and to improve the NER model. Two empirical experiments are conducted: one is a real-world experiment, and the other is a simulation. The real-world experiment tackles the archaeological domain. In this experiment, an NER is developed for two languages: English and Italian. The second experiment is in the biomedical domain, and an already annotated data-set is used to simulate the approach presented in this thesis. The results of the experiments suggest that the approach used in this thesis is a promising candidate for developing domain specific NER, as it achieved results that are significantly higher than the baseline interm of the F-score." @default.
- W2977507172 created "2019-10-10" @default.
- W2977507172 creator A5030949684 @default.
- W2977507172 date "2019-09-01" @default.
- W2977507172 modified "2023-09-27" @default.
- W2977507172 title "Active Expert Sourcing; Knowledge Extraction from Domain Specific Information" @default.
- W2977507172 hasPublicationYear "2019" @default.
- W2977507172 type Work @default.
- W2977507172 sameAs 2977507172 @default.
- W2977507172 citedByCount "0" @default.
- W2977507172 crossrefType "dissertation" @default.
- W2977507172 hasAuthorship W2977507172A5030949684 @default.
- W2977507172 hasConcept C132964779 @default.
- W2977507172 hasConcept C134306372 @default.
- W2977507172 hasConcept C136764020 @default.
- W2977507172 hasConcept C154945302 @default.
- W2977507172 hasConcept C162324750 @default.
- W2977507172 hasConcept C177264268 @default.
- W2977507172 hasConcept C187736073 @default.
- W2977507172 hasConcept C195807954 @default.
- W2977507172 hasConcept C199360897 @default.
- W2977507172 hasConcept C204321447 @default.
- W2977507172 hasConcept C23123220 @default.
- W2977507172 hasConcept C2522767166 @default.
- W2977507172 hasConcept C2776321320 @default.
- W2977507172 hasConcept C2779135771 @default.
- W2977507172 hasConcept C2780451532 @default.
- W2977507172 hasConcept C33923547 @default.
- W2977507172 hasConcept C36503486 @default.
- W2977507172 hasConcept C41008148 @default.
- W2977507172 hasConcept C43521106 @default.
- W2977507172 hasConcept C52146309 @default.
- W2977507172 hasConcept C62230096 @default.
- W2977507172 hasConcept C98045186 @default.
- W2977507172 hasConceptScore W2977507172C132964779 @default.
- W2977507172 hasConceptScore W2977507172C134306372 @default.
- W2977507172 hasConceptScore W2977507172C136764020 @default.
- W2977507172 hasConceptScore W2977507172C154945302 @default.
- W2977507172 hasConceptScore W2977507172C162324750 @default.
- W2977507172 hasConceptScore W2977507172C177264268 @default.
- W2977507172 hasConceptScore W2977507172C187736073 @default.
- W2977507172 hasConceptScore W2977507172C195807954 @default.
- W2977507172 hasConceptScore W2977507172C199360897 @default.
- W2977507172 hasConceptScore W2977507172C204321447 @default.
- W2977507172 hasConceptScore W2977507172C23123220 @default.
- W2977507172 hasConceptScore W2977507172C2522767166 @default.
- W2977507172 hasConceptScore W2977507172C2776321320 @default.
- W2977507172 hasConceptScore W2977507172C2779135771 @default.
- W2977507172 hasConceptScore W2977507172C2780451532 @default.
- W2977507172 hasConceptScore W2977507172C33923547 @default.
- W2977507172 hasConceptScore W2977507172C36503486 @default.
- W2977507172 hasConceptScore W2977507172C41008148 @default.
- W2977507172 hasConceptScore W2977507172C43521106 @default.
- W2977507172 hasConceptScore W2977507172C52146309 @default.
- W2977507172 hasConceptScore W2977507172C62230096 @default.
- W2977507172 hasConceptScore W2977507172C98045186 @default.
- W2977507172 hasLocation W29775071721 @default.
- W2977507172 hasOpenAccess W2977507172 @default.
- W2977507172 hasPrimaryLocation W29775071721 @default.
- W2977507172 hasRelatedWork W1567620501 @default.
- W2977507172 hasRelatedWork W1572517894 @default.
- W2977507172 hasRelatedWork W160790211 @default.
- W2977507172 hasRelatedWork W1840929108 @default.
- W2977507172 hasRelatedWork W1915207979 @default.
- W2977507172 hasRelatedWork W2101680936 @default.
- W2977507172 hasRelatedWork W2127940648 @default.
- W2977507172 hasRelatedWork W2371931538 @default.
- W2977507172 hasRelatedWork W2585785990 @default.
- W2977507172 hasRelatedWork W2951631206 @default.
- W2977507172 hasRelatedWork W3120114866 @default.
- W2977507172 hasRelatedWork W3143722067 @default.
- W2977507172 hasRelatedWork W3176203208 @default.
- W2977507172 hasRelatedWork W3190212418 @default.
- W2977507172 hasRelatedWork W3210190743 @default.
- W2977507172 hasRelatedWork W3210896084 @default.
- W2977507172 hasRelatedWork W3212013320 @default.
- W2977507172 hasRelatedWork W59620460 @default.
- W2977507172 hasRelatedWork W2697222628 @default.
- W2977507172 hasRelatedWork W3089776134 @default.
- W2977507172 isParatext "false" @default.
- W2977507172 isRetracted "false" @default.
- W2977507172 magId "2977507172" @default.
- W2977507172 workType "dissertation" @default.