Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977530153> ?p ?o ?g. }
- W2977530153 abstract "To examine the features of complex visual world, sensor technology merged with objects characteristics to scenes well. These scenes understanding are highly demanding task in different domains of visionary technologies like autonomous driving, generic object detection, sports scene identification and security. In this paper, we proposed a novel statistical segmented framework that can learn robust scene model and separate each object component. Then, each component is used to extract geometrical features that concatenate extreme points features, orientation and polygon displacement values. These features help in object detection and Gaussian Naive Bayes is used for the scene recognition. The experimental evaluation demonstrated the proposed approach over UIUC Sports and 15 Scene datasets that achieved scene recognition rate of 85.09% and 82.65%. The proposed system should be applicable to different emerging technologies such as augmented reality scene integration, GPS location finder and visual surveillance which recognized different locations/objects to understand real world scenes." @default.
- W2977530153 created "2019-10-10" @default.
- W2977530153 creator A5011895571 @default.
- W2977530153 creator A5067753860 @default.
- W2977530153 creator A5072951124 @default.
- W2977530153 date "2019-08-01" @default.
- W2977530153 modified "2023-09-26" @default.
- W2977530153 title "Scene Understanding and Recognition: Statistical Segmented Model using Geometrical Features and Gaussian Naïve Bayes" @default.
- W2977530153 cites W1907532332 @default.
- W2977530153 cites W2022927695 @default.
- W2977530153 cites W2033719708 @default.
- W2977530153 cites W2046896530 @default.
- W2977530153 cites W2050879541 @default.
- W2977530153 cites W2058963220 @default.
- W2977530153 cites W2079505600 @default.
- W2977530153 cites W2094618318 @default.
- W2977530153 cites W2104406636 @default.
- W2977530153 cites W2116225745 @default.
- W2977530153 cites W2120846928 @default.
- W2977530153 cites W2125310925 @default.
- W2977530153 cites W2133417935 @default.
- W2977530153 cites W2147322805 @default.
- W2977530153 cites W2147625498 @default.
- W2977530153 cites W2149896004 @default.
- W2977530153 cites W2160126058 @default.
- W2977530153 cites W2160131906 @default.
- W2977530153 cites W2207211395 @default.
- W2977530153 cites W2220115935 @default.
- W2977530153 cites W2283292693 @default.
- W2977530153 cites W2347000548 @default.
- W2977530153 cites W2506886870 @default.
- W2977530153 cites W2529431648 @default.
- W2977530153 cites W2566887294 @default.
- W2977530153 cites W2568838907 @default.
- W2977530153 cites W2749304824 @default.
- W2977530153 cites W2753371832 @default.
- W2977530153 cites W2769833683 @default.
- W2977530153 cites W2901073115 @default.
- W2977530153 cites W2909218472 @default.
- W2977530153 cites W2921586637 @default.
- W2977530153 cites W2932098188 @default.
- W2977530153 cites W2944310648 @default.
- W2977530153 doi "https://doi.org/10.1109/icaem.2019.8853721" @default.
- W2977530153 hasPublicationYear "2019" @default.
- W2977530153 type Work @default.
- W2977530153 sameAs 2977530153 @default.
- W2977530153 citedByCount "33" @default.
- W2977530153 countsByYear W29775301532019 @default.
- W2977530153 countsByYear W29775301532020 @default.
- W2977530153 countsByYear W29775301532021 @default.
- W2977530153 countsByYear W29775301532022 @default.
- W2977530153 countsByYear W29775301532023 @default.
- W2977530153 crossrefType "proceedings-article" @default.
- W2977530153 hasAuthorship W2977530153A5011895571 @default.
- W2977530153 hasAuthorship W2977530153A5067753860 @default.
- W2977530153 hasAuthorship W2977530153A5072951124 @default.
- W2977530153 hasConcept C107673813 @default.
- W2977530153 hasConcept C121332964 @default.
- W2977530153 hasConcept C153180895 @default.
- W2977530153 hasConcept C154945302 @default.
- W2977530153 hasConcept C16345878 @default.
- W2977530153 hasConcept C163716315 @default.
- W2977530153 hasConcept C168167062 @default.
- W2977530153 hasConcept C207201462 @default.
- W2977530153 hasConcept C2524010 @default.
- W2977530153 hasConcept C2781238097 @default.
- W2977530153 hasConcept C31972630 @default.
- W2977530153 hasConcept C33923547 @default.
- W2977530153 hasConcept C41008148 @default.
- W2977530153 hasConcept C62520636 @default.
- W2977530153 hasConcept C64876066 @default.
- W2977530153 hasConcept C97355855 @default.
- W2977530153 hasConceptScore W2977530153C107673813 @default.
- W2977530153 hasConceptScore W2977530153C121332964 @default.
- W2977530153 hasConceptScore W2977530153C153180895 @default.
- W2977530153 hasConceptScore W2977530153C154945302 @default.
- W2977530153 hasConceptScore W2977530153C16345878 @default.
- W2977530153 hasConceptScore W2977530153C163716315 @default.
- W2977530153 hasConceptScore W2977530153C168167062 @default.
- W2977530153 hasConceptScore W2977530153C207201462 @default.
- W2977530153 hasConceptScore W2977530153C2524010 @default.
- W2977530153 hasConceptScore W2977530153C2781238097 @default.
- W2977530153 hasConceptScore W2977530153C31972630 @default.
- W2977530153 hasConceptScore W2977530153C33923547 @default.
- W2977530153 hasConceptScore W2977530153C41008148 @default.
- W2977530153 hasConceptScore W2977530153C62520636 @default.
- W2977530153 hasConceptScore W2977530153C64876066 @default.
- W2977530153 hasConceptScore W2977530153C97355855 @default.
- W2977530153 hasLocation W29775301531 @default.
- W2977530153 hasOpenAccess W2977530153 @default.
- W2977530153 hasPrimaryLocation W29775301531 @default.
- W2977530153 hasRelatedWork W1528044252 @default.
- W2977530153 hasRelatedWork W1531683208 @default.
- W2977530153 hasRelatedWork W1569815043 @default.
- W2977530153 hasRelatedWork W2200925278 @default.
- W2977530153 hasRelatedWork W2328068029 @default.
- W2977530153 hasRelatedWork W2330829846 @default.
- W2977530153 hasRelatedWork W2363840281 @default.
- W2977530153 hasRelatedWork W2372904789 @default.
- W2977530153 hasRelatedWork W2636771212 @default.