Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977724575> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2977724575 endingPage "230" @default.
- W2977724575 startingPage "215" @default.
- W2977724575 abstract "As the lot of data is getting generated and captured in Internet of Things (IoT)—based industrial devices which is real time and unstructured in nature. The IoT technology—based sensors are the effective solution for monitoring these industrial processes in an efficient way. However, the real—time data storage and its processing in IoT applications is still a big challenge. This chapter proposes a new big data pipeline solution for storing and processing IoT sensor data. The proposed big data processing platform uses Apache Flume for efficiently collecting and transferring large amounts of IoT data from Cloud—based server into Hadoop Distributed File System for storage of IoT—based sensor data. Apache Storm is to be used for processing this real—time data. Next, the authors propose the use of hybrid prediction model of Density-based spatial clustering of applications with noise (DBSCAN) to remove sensor data outliers and provide better accuracy fault detection in IoT Industrial processes by using Support Vector Machine (SVM) machine learning classification technique." @default.
- W2977724575 created "2019-10-10" @default.
- W2977724575 creator A5036233830 @default.
- W2977724575 creator A5073795408 @default.
- W2977724575 creator A5075565875 @default.
- W2977724575 creator A5084032371 @default.
- W2977724575 creator A5085166451 @default.
- W2977724575 date "2020-01-01" @default.
- W2977724575 modified "2023-10-17" @default.
- W2977724575 title "Efficient Big Data-Based Storage and Processing Model in Internet of Things for Improving Accuracy Fault Detection in Industrial Processes" @default.
- W2977724575 cites W1456662665 @default.
- W2977724575 cites W1507072099 @default.
- W2977724575 cites W1535753778 @default.
- W2977724575 cites W2019072087 @default.
- W2977724575 cites W2076587863 @default.
- W2977724575 cites W2079966435 @default.
- W2977724575 cites W2123166308 @default.
- W2977724575 cites W2125800352 @default.
- W2977724575 cites W2326236514 @default.
- W2977724575 cites W2479904972 @default.
- W2977724575 cites W2506048546 @default.
- W2977724575 cites W2559520037 @default.
- W2977724575 cites W2572567536 @default.
- W2977724575 cites W2625392185 @default.
- W2977724575 cites W2726150830 @default.
- W2977724575 cites W2805611890 @default.
- W2977724575 cites W3022265167 @default.
- W2977724575 cites W4236604615 @default.
- W2977724575 doi "https://doi.org/10.4018/978-1-7998-0373-7.ch009" @default.
- W2977724575 hasPublicationYear "2020" @default.
- W2977724575 type Work @default.
- W2977724575 sameAs 2977724575 @default.
- W2977724575 citedByCount "6" @default.
- W2977724575 countsByYear W29777245752020 @default.
- W2977724575 countsByYear W29777245752021 @default.
- W2977724575 crossrefType "book-chapter" @default.
- W2977724575 hasAuthorship W2977724575A5036233830 @default.
- W2977724575 hasAuthorship W2977724575A5073795408 @default.
- W2977724575 hasAuthorship W2977724575A5075565875 @default.
- W2977724575 hasAuthorship W2977724575A5084032371 @default.
- W2977724575 hasAuthorship W2977724575A5085166451 @default.
- W2977724575 hasConcept C104047586 @default.
- W2977724575 hasConcept C111919701 @default.
- W2977724575 hasConcept C12267149 @default.
- W2977724575 hasConcept C124101348 @default.
- W2977724575 hasConcept C138827492 @default.
- W2977724575 hasConcept C152745839 @default.
- W2977724575 hasConcept C154945302 @default.
- W2977724575 hasConcept C17212007 @default.
- W2977724575 hasConcept C172707124 @default.
- W2977724575 hasConcept C41008148 @default.
- W2977724575 hasConcept C43521106 @default.
- W2977724575 hasConcept C46576248 @default.
- W2977724575 hasConcept C73555534 @default.
- W2977724575 hasConcept C75684735 @default.
- W2977724575 hasConcept C77088390 @default.
- W2977724575 hasConcept C79403827 @default.
- W2977724575 hasConcept C79974875 @default.
- W2977724575 hasConceptScore W2977724575C104047586 @default.
- W2977724575 hasConceptScore W2977724575C111919701 @default.
- W2977724575 hasConceptScore W2977724575C12267149 @default.
- W2977724575 hasConceptScore W2977724575C124101348 @default.
- W2977724575 hasConceptScore W2977724575C138827492 @default.
- W2977724575 hasConceptScore W2977724575C152745839 @default.
- W2977724575 hasConceptScore W2977724575C154945302 @default.
- W2977724575 hasConceptScore W2977724575C17212007 @default.
- W2977724575 hasConceptScore W2977724575C172707124 @default.
- W2977724575 hasConceptScore W2977724575C41008148 @default.
- W2977724575 hasConceptScore W2977724575C43521106 @default.
- W2977724575 hasConceptScore W2977724575C46576248 @default.
- W2977724575 hasConceptScore W2977724575C73555534 @default.
- W2977724575 hasConceptScore W2977724575C75684735 @default.
- W2977724575 hasConceptScore W2977724575C77088390 @default.
- W2977724575 hasConceptScore W2977724575C79403827 @default.
- W2977724575 hasConceptScore W2977724575C79974875 @default.
- W2977724575 hasLocation W29777245751 @default.
- W2977724575 hasOpenAccess W2977724575 @default.
- W2977724575 hasPrimaryLocation W29777245751 @default.
- W2977724575 hasRelatedWork W2186523764 @default.
- W2977724575 hasRelatedWork W2187492663 @default.
- W2977724575 hasRelatedWork W2330870411 @default.
- W2977724575 hasRelatedWork W2368219397 @default.
- W2977724575 hasRelatedWork W2474073737 @default.
- W2977724575 hasRelatedWork W2503866109 @default.
- W2977724575 hasRelatedWork W2959625647 @default.
- W2977724575 hasRelatedWork W3004596345 @default.
- W2977724575 hasRelatedWork W3168814018 @default.
- W2977724575 hasRelatedWork W4290987788 @default.
- W2977724575 isParatext "false" @default.
- W2977724575 isRetracted "false" @default.
- W2977724575 magId "2977724575" @default.
- W2977724575 workType "book-chapter" @default.