Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977771223> ?p ?o ?g. }
- W2977771223 endingPage "87.e8" @default.
- W2977771223 startingPage "69" @default.
- W2977771223 abstract "•A system for membrane repair, removal, and replacement is coordinated by galectins•Galectin-3 recruits ESCRT components to damaged lysosomes to repair them•Galectins induce autophagy to remove damaged lysosomes and activate their biogenesis•The galectin-directed systems protect against M. tuberculosis and neurotoxic tau Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a β-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis. Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a β-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis. The mammalian cell responds to organellar and plasma membrane damage by deploying a set of activities including those performed by the ESCRT (endosomal sorting complexes required for transport) machinery (Denais et al., 2016Denais C.M. Gilbert R.M. Isermann P. McGregor A.L. te Lindert M. Weigelin B. Davidson P.M. Friedl P. Wolf K. Lammerding J. Nuclear envelope rupture and repair during cancer cell migration.Science. 2016; 352: 353-358Crossref PubMed Scopus (401) Google Scholar, Jimenez et al., 2014Jimenez A.J. Maiuri P. Lafaurie-Janvore J. Divoux S. Piel M. Perez F. ESCRT machinery is required for plasma membrane repair.Science. 2014; 343: 1247136Crossref PubMed Scopus (246) Google Scholar, Raab et al., 2016Raab M. Gentili M. de Belly H. Thiam H.R. Vargas P. Jimenez A.J. Lautenschlaeger F. Voituriez R. Lennon-Duménil A.M. Manel N. et al.ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.Science. 2016; 352: 359-362Crossref PubMed Scopus (296) Google Scholar, Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Scheffer et al., 2014Scheffer L.L. Sreetama S.C. Sharma N. Medikayala S. Brown K.J. Defour A. Jaiswal J.K. Mechanism of Ca2⁺-triggered ESCRT assembly and regulation of cell membrane repair.Nat. Commun. 2014; 5: 5646Crossref PubMed Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar) and autophagy systems (Chauhan et al., 2016Chauhan S. Kumar S. Jain A. Ponpuak M. Mudd M.H. Kimura T. Choi S.W. Peters R. Mandell M. Bruun J.A. et al.TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis.Dev. Cell. 2016; 39: 13-27Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, Dupont et al., 2009Dupont N. Lacas-Gervais S. Bertout J. Paz I. Freche B. Van Nhieu G.T. van der Goot F.G. Sansonetti P.J. Lafont F. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy.Cell Host Microbe. 2009; 6: 137-149Abstract Full Text Full Text PDF PubMed Scopus (228) Google Scholar, Fujita et al., 2013Fujita N. Morita E. Itoh T. Tanaka A. Nakaoka M. Osada Y. Umemoto T. Saitoh T. Nakatogawa H. Kobayashi S. et al.Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin.J. Cell Biol. 2013; 203: 115-128Crossref PubMed Scopus (151) Google Scholar, Thurston et al., 2012Thurston T.L. Wandel M.P. von Muhlinen N. Foeglein A. Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion.Nature. 2012; 482: 414-418Crossref PubMed Scopus (499) Google Scholar, Wei et al., 2017Wei Y. Chiang W.C. Sumpter Jr., R. Mishra P. Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor.Cell. 2017; 168: 224-238.e10Abstract Full Text Full Text PDF PubMed Scopus (200) Google Scholar, Yoshida et al., 2017Yoshida Y. Yasuda S. Fujita T. Hamasaki M. Murakami A. Kawawaki J. Iwai K. Saeki Y. Yoshimori T. Matsuda N. et al.Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy.Proc. Natl. Acad. Sci. USA. 2017; 114: 8574-8579Crossref PubMed Scopus (0) Google Scholar). The contributions of ESCRT (Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar) and autophagic responses (Jia et al., 2018Jia J. Abudu Y.P. Claude-Taupin A. Gu Y. Kumar S. Choi S.W. Peters R. Mudd M.H. Allers L. Salemi M. et al.Galectins control mTOR in response to endomembrane damage.Mol. Cell. 2018; 70: 120-135.e8Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar, Maejima et al., 2013Maejima I. Takahashi A. Omori H. Kimura T. Takabatake Y. Saitoh T. Yamamoto A. Hamasaki M. Noda T. Isaka Y. et al.Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.EMBO J. 2013; 32: 2336-2347Crossref PubMed Scopus (196) Google Scholar, Yoshida et al., 2017Yoshida Y. Yasuda S. Fujita T. Hamasaki M. Murakami A. Kawawaki J. Iwai K. Saeki Y. Yoshimori T. Matsuda N. et al.Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy.Proc. Natl. Acad. Sci. USA. 2017; 114: 8574-8579Crossref PubMed Scopus (0) Google Scholar) during lysosomal membrane damage have received recent attention in the context of maintaining endolysosomal system homeostasis. However, whether and how ESCRT and autophagy cooperate during endomembrane damage is not well understood. Previous studies suggest that these systems may act independently when lysosomes are damaged (Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar). The mechanism for how ESCRT act in membrane repair, including during lysosomal damage, is believed to be membrane scission and closure (Denais et al., 2016Denais C.M. Gilbert R.M. Isermann P. McGregor A.L. te Lindert M. Weigelin B. Davidson P.M. Friedl P. Wolf K. Lammerding J. Nuclear envelope rupture and repair during cancer cell migration.Science. 2016; 352: 353-358Crossref PubMed Scopus (401) Google Scholar, Jimenez et al., 2014Jimenez A.J. Maiuri P. Lafaurie-Janvore J. Divoux S. Piel M. Perez F. ESCRT machinery is required for plasma membrane repair.Science. 2014; 343: 1247136Crossref PubMed Scopus (246) Google Scholar, Raab et al., 2016Raab M. Gentili M. de Belly H. Thiam H.R. Vargas P. Jimenez A.J. Lautenschlaeger F. Voituriez R. Lennon-Duménil A.M. Manel N. et al.ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.Science. 2016; 352: 359-362Crossref PubMed Scopus (296) Google Scholar, Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Scheffer et al., 2014Scheffer L.L. Sreetama S.C. Sharma N. Medikayala S. Brown K.J. Defour A. Jaiswal J.K. Mechanism of Ca2⁺-triggered ESCRT assembly and regulation of cell membrane repair.Nat. Commun. 2014; 5: 5646Crossref PubMed Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar), as in a range of other membrane remodeling, budding, and fission phenomena (Christ et al., 2017Christ L. Raiborg C. Wenzel E.M. Campsteijn C. Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery.Trends Biochem. Sci. 2017; 42: 42-56Abstract Full Text Full Text PDF PubMed Scopus (147) Google Scholar, Hurley, 2015Hurley J.H. ESCRTs are everywhere.EMBO J. 2015; 34: 2398-2407Crossref PubMed Scopus (202) Google Scholar). These include formation of intraluminal vesicles of late endosomal multivesicular bodies (MVBs) (Katzmann et al., 2002Katzmann D.J. Odorizzi G. Emr S.D. Receptor downregulation and multivesicular-body sorting.Nat. Rev. Mol. Cell Biol. 2002; 3: 893-905Crossref PubMed Scopus (954) Google Scholar), budding of enveloped viruses including HIV (Dussupt et al., 2009Dussupt V. Javid M.P. Abou-Jaoudé G. Jadwin J.A. de La Cruz J. Nagashima K. Bouamr F. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding.PLoS Pathog. 2009; 5: e1000339Crossref PubMed Scopus (104) Google Scholar, Fisher et al., 2007Fisher R.D. Chung H.Y. Zhai Q. Robinson H. Sundquist W.I. Hill C.P. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding.Cell. 2007; 128: 841-852Abstract Full Text Full Text PDF PubMed Scopus (229) Google Scholar, Fujii et al., 2009Fujii K. Munshi U.M. Ablan S.D. Demirov D.G. Soheilian F. Nagashima K. Stephen A.G. Fisher R.J. Freed E.O. Functional role of Alix in HIV-1 replication.Virology. 2009; 391: 284-292Crossref PubMed Scopus (58) Google Scholar, Garrus et al., 2001Garrus J.E. von Schwedler U.K. Pornillos O.W. Morham S.G. Zavitz K.H. Wang H.E. Wettstein D.A. Stray K.M. Côté M. Rich R.L. et al.Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.Cell. 2001; 107: 55-65Abstract Full Text Full Text PDF PubMed Scopus (1066) Google Scholar, Martin-Serrano et al., 2001Martin-Serrano J. Zang T. Bieniasz P.D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress.Nat. Med. 2001; 7: 1313-1319Crossref PubMed Scopus (571) Google Scholar), exosome formation (Baietti et al., 2012Baietti M.F. Zhang Z. Mortier E. Melchior A. Degeest G. Geeraerts A. Ivarsson Y. Depoortere F. Coomans C. Vermeiren E. et al.Syndecan-syntenin-ALIX regulates the biogenesis of exosomes.Nat. Cell Biol. 2012; 14: 677-685Crossref PubMed Scopus (661) Google Scholar, Nabhan et al., 2012Nabhan J.F. Hu R. Oh R.S. Cohen S.N. Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein.Proc. Natl. Acad. Sci. USA. 2012; 109: 4146-4151Crossref PubMed Scopus (247) Google Scholar, van Niel et al., 2011van Niel G. Charrin S. Simoes S. Romao M. Rochin L. Saftig P. Marks M.S. Rubinstein E. Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis.Dev. Cell. 2011; 21: 708-721Abstract Full Text Full Text PDF PubMed Scopus (299) Google Scholar), shedding of microvesicles or ectosomes (Choudhuri et al., 2014Choudhuri K. Llodrá J. Roth E.W. Tsai J. Gordo S. Wucherpfennig K.W. Kam L.C. Stokes D.L. Dustin M.L. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.Nature. 2014; 507: 118-123Crossref PubMed Scopus (199) Google Scholar, Matusek et al., 2014Matusek T. Wendler F. Polès S. Pizette S. D'Angelo G. Fürthauer M. Thérond P.P. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog.Nature. 2014; 516: 99-103Crossref PubMed Scopus (65) Google Scholar, Nabhan et al., 2012Nabhan J.F. Hu R. Oh R.S. Cohen S.N. Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein.Proc. Natl. Acad. Sci. USA. 2012; 109: 4146-4151Crossref PubMed Scopus (247) Google Scholar), nuclear envelope reformation after mitosis (Olmos et al., 2015Olmos Y. Hodgson L. Mantell J. Verkade P. Carlton J.G. ESCRT-III controls nuclear envelope reformation.Nature. 2015; 522: 236-239Crossref PubMed Scopus (164) Google Scholar, Vietri et al., 2015Vietri M. Schink K.O. Campsteijn C. Wegner C.S. Schultz S.W. Christ L. Thoresen S.B. Brech A. Raiborg C. Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing.Nature. 2015; 522: 231-235Crossref PubMed Scopus (161) Google Scholar), and for midbody abscission during cytokinesis (Carlton and Martin-Serrano, 2007Carlton J.G. Martin-Serrano J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.Science. 2007; 316: 1908-1912Crossref PubMed Scopus (507) Google Scholar, Morita et al., 2007Morita E. Sandrin V. Chung H.Y. Morham S.G. Gygi S.P. Rodesch C.K. Sundquist W.I. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.EMBO J. 2007; 26: 4215-4227Crossref PubMed Scopus (438) Google Scholar). ESCRT play a role in repair of plasma membrane damaged by chemical or physical means (Jimenez et al., 2014Jimenez A.J. Maiuri P. Lafaurie-Janvore J. Divoux S. Piel M. Perez F. ESCRT machinery is required for plasma membrane repair.Science. 2014; 343: 1247136Crossref PubMed Scopus (246) Google Scholar, Scheffer et al., 2014Scheffer L.L. Sreetama S.C. Sharma N. Medikayala S. Brown K.J. Defour A. Jaiswal J.K. Mechanism of Ca2⁺-triggered ESCRT assembly and regulation of cell membrane repair.Nat. Commun. 2014; 5: 5646Crossref PubMed Google Scholar), repair or removal of cell-death-inducing plasma membrane pores in pyroptosis (Rühl et al., 2018Rühl S. Shkarina K. Demarco B. Heilig R. Santos J.C. Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation.Science. 2018; 362: 956-960Crossref PubMed Scopus (74) Google Scholar) or membrane disruption during necroptosis (Gong et al., 2017Gong Y.N. Guy C. Olauson H. Becker J.U. Yang M. Fitzgerald P. Linkermann A. Green D.R. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences.Cell. 2017; 169: 286-300.e16Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar), repair of damaged lysosomes (Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar), repair of damaged nuclear envelope (Denais et al., 2016Denais C.M. Gilbert R.M. Isermann P. McGregor A.L. te Lindert M. Weigelin B. Davidson P.M. Friedl P. Wolf K. Lammerding J. Nuclear envelope rupture and repair during cancer cell migration.Science. 2016; 352: 353-358Crossref PubMed Scopus (401) Google Scholar, Raab et al., 2016Raab M. Gentili M. de Belly H. Thiam H.R. Vargas P. Jimenez A.J. Lautenschlaeger F. Voituriez R. Lennon-Duménil A.M. Manel N. et al.ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.Science. 2016; 352: 359-362Crossref PubMed Scopus (296) Google Scholar), and quality control and clearance of defective nuclear pores (Webster et al., 2014Webster B.M. Colombi P. Jäger J. Lusk C.P. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4.Cell. 2014; 159: 388-401Abstract Full Text Full Text PDF PubMed Scopus (102) Google Scholar). One specific ESCRT component, ALIX, is capable of bypassing ESCRT-0/-I/-II during the recruitment of ESCRT-III proteins to membrane scission sites (Christ et al., 2017Christ L. Raiborg C. Wenzel E.M. Campsteijn C. Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery.Trends Biochem. Sci. 2017; 42: 42-56Abstract Full Text Full Text PDF PubMed Scopus (147) Google Scholar, Hurley, 2015Hurley J.H. ESCRTs are everywhere.EMBO J. 2015; 34: 2398-2407Crossref PubMed Scopus (202) Google Scholar). TSG101, an ESCRT-I component, and ALIX are recruited directly to membrane damage sites at lysosomes (Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar), nuclear envelope (Denais et al., 2016Denais C.M. Gilbert R.M. Isermann P. McGregor A.L. te Lindert M. Weigelin B. Davidson P.M. Friedl P. Wolf K. Lammerding J. Nuclear envelope rupture and repair during cancer cell migration.Science. 2016; 352: 353-358Crossref PubMed Scopus (401) Google Scholar, Olmos et al., 2015Olmos Y. Hodgson L. Mantell J. Verkade P. Carlton J.G. ESCRT-III controls nuclear envelope reformation.Nature. 2015; 522: 236-239Crossref PubMed Scopus (164) Google Scholar, Raab et al., 2016Raab M. Gentili M. de Belly H. Thiam H.R. Vargas P. Jimenez A.J. Lautenschlaeger F. Voituriez R. Lennon-Duménil A.M. Manel N. et al.ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.Science. 2016; 352: 359-362Crossref PubMed Scopus (296) Google Scholar, Vietri et al., 2015Vietri M. Schink K.O. Campsteijn C. Wegner C.S. Schultz S.W. Christ L. Thoresen S.B. Brech A. Raiborg C. Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing.Nature. 2015; 522: 231-235Crossref PubMed Scopus (161) Google Scholar), and plasma membrane (Jimenez et al., 2014Jimenez A.J. Maiuri P. Lafaurie-Janvore J. Divoux S. Piel M. Perez F. ESCRT machinery is required for plasma membrane repair.Science. 2014; 343: 1247136Crossref PubMed Scopus (246) Google Scholar), and functional studies indicate that they may act redundantly during lysosomal damage repair (Radulovic et al., 2018Radulovic M. Schink K.O. Wenzel E.M. Nähse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival.EMBO J. 2018; 37https://doi.org/10.15252/embj.201899753Crossref PubMed Scopus (30) Google Scholar, Skowyra et al., 2018Skowyra M.L. Schlesinger P.H. Naismith T.V. Hanson P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair.Science. 2018; 360https://doi.org/10.1126/science.aar5078Crossref PubMed Scopus (61) Google Scholar). Among the latest additions to the portfolio of ESCRT roles (Christ et al., 2017Christ L. Raiborg C. Wenzel E.M. Campsteijn C. Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery.Trends Biochem. Sci. 2017; 42: 42-56Abstract Full Text Full Text PDF PubMed Scopus (147) Google Scholar, Hurley, 2015Hurley J.H. ESCRTs are everywhere.EMBO J. 2015; 34: 2398-2407Crossref PubMed Scopus (202) Google Scholar) is the final step of autophagosomal membrane closure, based on theoretical considerations and some experimental support suggesting that ESCRT-assisted membrane scission occurs between the future outer and inner membrane of closing phagophores to become fully sealed autophagosomes (Knorr et al., 2015Knorr R.L. Lipowsky R. Dimova R. Autophagosome closure requires membrane scission.Autophagy. 2015; 11: 2134-2137Crossref PubMed Scopus (6) Google Scholar, Lee et al., 2007Lee J.A. Beigneux A. Ahmad S.T. Young S.G. Gao F.B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration.Curr. Biol. 2007; 17: 1561-1567Abstract Full Text Full Text PDF PubMed Scopus (315) Google Scholar, Rusten and Stenmark, 2009Rusten T.E. Stenmark H. How do ESCRT proteins control autophagy?.J. Cell Sci. 2009; 122: 2179-2183Crossref PubMed Scopus (106) Google Scholar, Takahashi et al., 2018Takahashi Y. He H. Tang Z. Hattori T. Liu Y. Young M.M. Serfass J.M. Chen L. Gebru M. Chen C. et al.An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure.Nat. Commun. 2018; 9: 2855Crossref PubMed Scopus (49) Google Scholar). Autophagy is a process contributing to both cytoplasmic quality control and metabolism (Levine and Kroemer, 2019Levine B. Kroemer G. Biological functions of autophagy genes: a disease perspective.Cell. 2019; 176: 11-42Abstract Full Text Full Text PDF PubMed Scopus (213) Google Scholar, Mizushima et al., 2011Mizushima N. Yoshimori T. Ohsumi Y. The role of Atg proteins in autophagosome formation.Annu. Rev. Cell Dev. Biol. 2011; 27: 107-132Crossref PubMed Scopus (1517) Google Scholar). This pathway can be activated by metabolic inputs or stress (Garcia and Shaw, 2017Garcia D. Shaw R.J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance.Mol. Cell. 2017; 66: 789-800Abstract Full Text Full Text PDF PubMed Google Scholar, Mariño et al., 2014Mariño G. Pietrocola F. Eisenberg T. Kong Y. Malik S.A. Andryushkova A. Schroeder S. Pendl T. Harger A. Niso-Santano M. et al.Regulation of autophagy by cytosolic acetyl-coenzyme A.Mol. Cell. 2014; 53: 710-725Abstract Full Text Full Text PDF PubMed Scopus (229) Google Scholar, Noda and Ohsumi, 1998Noda T. Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast.J. Biol. Chem. 1998; 273: 3963-3966Crossref PubMed Scopus (875) Google Scholar, Saxton and Sabatini, 2017Saxton R.A. Sabatini D.M. MTOR signaling in growth, metabolism, and disease.Cell. 2017; 168: 960-976Abstract Full Text Full Text PDF PubMed Scopus (1278) Google Scholar, Scott et al., 2004Scott R.C. Schuldiner O. Neufeld T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body.Dev. Cell. 2004; 7: 167-178Abstract Full Text Full Text PDF PubMed Scopus (670) Google Scholar) or can also be selectively triggered by cargo recognition (Kimura et al., 2016Kimura T. Mandell M. Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family.J. Cell Sci. 2016; 129: 881-891Crossref PubMed Google Scholar, Lazarou et al., 2015Lazarou M. Sliter D.A. Kane L.A. Sarraf S.A. Wang C. Burman J.L. Sideris D.P. Fogel A.I. Youle R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.Nature. 2015; 524: 309-314Crossref PubMed Google Scholar, Mandell et al., 2014Mandell M.A. Jain A. Arko-Mensah J. Chauhan S. Kimura T. Dinkins C. Silvestri G. Münch J. Kirchhoff F. Simonsen A. et al.TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition.Dev. Cell. 2014; 30: 394-409Abstract Full Text Full Text PDF PubMed Scopus (155) Google Scholar) when guided by autophagic receptors (Birgisdottir et al., 2013Birgisdottir Å.B. Lamark T. Johansen T. The LIR motif - crucial for selective autophagy.J. Cell Sci. 2013; 126: 3237-3247Crossref PubMed Scopus (0) Google Scholar, Bjørkøy et al., 2005Bjørkøy G. Lamark T. Brech A. Outzen H. Perander M. Overvatn A. Stenmark H. Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J. Cell Biol. 2005; 171: 603-614Crossref PubMed Scopus (2061) Google Scholar, Kimura et al., 2016Kimura T. Mandell M. Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family.J. Cell Sci. 2016; 129: 881-891Crossref PubMed Google Scholar, Levine and Kroemer, 2019Levine B. Kroemer G. Biological functions of autophagy genes: a disease perspective.Cell. 2019; 176: 11-42Abstract Full Text Full Text PDF PubMed Scopus (213) Google Scholar, Stolz et al., 2014Stolz A. Ernst A. Dikic I. Cargo recognition and trafficking in selective autophagy.Nat. Cell Biol. 2014; 16: 495-501Crossref PubMed Scopus (530) Google Scholar). Autophagy machinery is often recruited to damaged organelles after they are marked for degradation by ubiquitin or galectin tags (Randow and Youle, 2014Randow F. Youle R.J. Self and nonself: how autophagy targets mitochondria and bacteria.Cell Host Microbe. 2014; 15: 403-411Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar, Stolz et al., 2014Stolz A. Ernst A. Dikic I. Cargo recognition and trafficking in selective autophagy.Nat. Cell Biol. 2014; 16: 495-501Crossref PubMed Scopus (530) Google Scholar). Two well-studied galectin-interacting autophagy receptors are NDP52, which recognizes galectin-8 (Gal8) (Thurston et al., 2012Thurston T.L. Wandel M.P. von Muhlinen N. Foeglein A. Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion.Nature. 2012; 482: 414-418Crossref PubMed Scopus (499) Google Scholar), and TRIM16, which binds to both galectin-3 (Gal3) (Chauhan et al., 2016Chauhan S. Kumar S. Jain A. Ponpuak M. Mudd M.H. Kimura T. Choi S.W. Peters R. Mandell M. Bruun J.A. et al.TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis.Dev. Cell. 2016; 39: 13-27Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar) and Gal8 (Kimura et al., 2017Kimura T. Jia J. Kumar S. Choi S.W. Gu Y. Mudd M. Dupont N. Jiang S. Peters R. Farzam F. et al.Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy.EMBO J. 2017; 36: 42-60Crossref PubMed Google Scholar). Autophagy initiation is controlled by several modules (Mizushima et al., 2011Mizushima N. Yoshimori T. Ohsumi Y. The role of Atg proteins in autophagosome formation.Annu. Rev. Cell Dev. Biol. 2011; 27: 107-132Crossref PubMed Scopus (1517) Google Scholar): (1) the ULK1/2 kinase complex with FIP200, ATG13, and ATG101, acting as conduits for inhibition by active mTOR (Ganley et al., 2009Ganley I.G. Lam du H. Wang J. Ding X. Chen S. Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy.J. Biol. Chem. 2009; 284: 12297-12305Crossref PubMed Scopus (800) Google Scholar, Hosokawa et al., 2009Hosokawa N. Hara T. Kaizuka T. Kishi C. Takamura A. Miura Y. Iemura S. Natsume T. Takehana K. Yamada N. et al.Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy.Mol. Biol. Cell. 2009; 20: 1981-1991Crossref PubMed Scopus (1095) Google Scholar, Jung et al., 2009Jung C.H. Jun C.B. Ro S.H. Kim Y.M. Otto N.M. Cao J. Kundu M. Kim D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.Mol. Biol. Cell. 2009; 20: 1992-2003Crossref PubMed Scopus (1157) Google Scholar) and activation by AMPK (Kim et al., 2011Kim J. Kundu M. Viollet B. Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat. Cell Biol. 2011; 13: 132-141Crossref PubMed Scopus (2968) Google Scholar) to induce autophagy; (2) ATG14L-endowed Class III PI3-kinase complex (Baskaran et al., 2014Baskaran S. Carlson L.A. Stjepanovic G. Young L.N. Kim D.J. Grob P. Stanley R.E. Nogales E. Hurley J.H. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex.elife. 2014; 3Crossref PubMed Scopus (75) Google Scholar, Chang et al., 2019Chang C. Young L.N. Morris K.L. von Bülow S. Schöneberg J. Yamamoto-Imoto H. Oe Y. Yamamoto K. Nakamura S. Stjepanovic G. et al.Bidirectional control of autophagy by BECN1 BARA domain dynamics.Mol. Cell. 2019; 73: 339-353.e6Abstract Full Text Full Text PDF PubMed Scopus (4) Google Sch" @default.
- W2977771223 created "2019-10-10" @default.
- W2977771223 creator A5004778008 @default.
- W2977771223 creator A5005106045 @default.
- W2977771223 creator A5010025132 @default.
- W2977771223 creator A5020990780 @default.
- W2977771223 creator A5025557654 @default.
- W2977771223 creator A5034206681 @default.
- W2977771223 creator A5034959054 @default.
- W2977771223 creator A5037618615 @default.
- W2977771223 creator A5049185721 @default.
- W2977771223 creator A5051525454 @default.
- W2977771223 creator A5052650615 @default.
- W2977771223 creator A5061542370 @default.
- W2977771223 creator A5076820187 @default.
- W2977771223 creator A5084209996 @default.
- W2977771223 creator A5091875844 @default.
- W2977771223 date "2020-01-01" @default.
- W2977771223 modified "2023-10-17" @default.
- W2977771223 title "Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal" @default.
- W2977771223 cites W1526993239 @default.
- W2977771223 cites W1568487852 @default.
- W2977771223 cites W1579964499 @default.
- W2977771223 cites W1670684017 @default.
- W2977771223 cites W1813266103 @default.
- W2977771223 cites W1859398825 @default.
- W2977771223 cites W1918384196 @default.
- W2977771223 cites W1964052965 @default.
- W2977771223 cites W1967989660 @default.
- W2977771223 cites W1970637701 @default.
- W2977771223 cites W1972256163 @default.
- W2977771223 cites W1975200363 @default.
- W2977771223 cites W1977767269 @default.
- W2977771223 cites W1980798766 @default.
- W2977771223 cites W1982606786 @default.
- W2977771223 cites W1984355221 @default.
- W2977771223 cites W1985902878 @default.
- W2977771223 cites W1992752531 @default.
- W2977771223 cites W1998307755 @default.
- W2977771223 cites W2003380425 @default.
- W2977771223 cites W2007169599 @default.
- W2977771223 cites W2012451546 @default.
- W2977771223 cites W2018302034 @default.
- W2977771223 cites W2019987740 @default.
- W2977771223 cites W2020665983 @default.
- W2977771223 cites W2023949937 @default.
- W2977771223 cites W2023994136 @default.
- W2977771223 cites W2024534024 @default.
- W2977771223 cites W2027978484 @default.
- W2977771223 cites W2028972269 @default.
- W2977771223 cites W2032377673 @default.
- W2977771223 cites W2033604747 @default.
- W2977771223 cites W2035849683 @default.
- W2977771223 cites W2036073789 @default.
- W2977771223 cites W2040328910 @default.
- W2977771223 cites W2042530286 @default.
- W2977771223 cites W2049645388 @default.
- W2977771223 cites W2053957762 @default.
- W2977771223 cites W2054888430 @default.
- W2977771223 cites W2057764483 @default.
- W2977771223 cites W2061185864 @default.
- W2977771223 cites W2062317708 @default.
- W2977771223 cites W2070658923 @default.
- W2977771223 cites W2074577396 @default.
- W2977771223 cites W2075030758 @default.
- W2977771223 cites W2077757969 @default.
- W2977771223 cites W2078184757 @default.
- W2977771223 cites W2082796078 @default.
- W2977771223 cites W2083919459 @default.
- W2977771223 cites W2095000965 @default.
- W2977771223 cites W2097481253 @default.
- W2977771223 cites W2097954680 @default.
- W2977771223 cites W2099360582 @default.
- W2977771223 cites W2103230459 @default.
- W2977771223 cites W2105012660 @default.
- W2977771223 cites W2105081087 @default.
- W2977771223 cites W2109167860 @default.
- W2977771223 cites W2112003767 @default.
- W2977771223 cites W2113432343 @default.
- W2977771223 cites W2114072930 @default.
- W2977771223 cites W2119351481 @default.
- W2977771223 cites W2119821121 @default.
- W2977771223 cites W2126210405 @default.
- W2977771223 cites W2126384811 @default.
- W2977771223 cites W2127187639 @default.
- W2977771223 cites W2130448025 @default.
- W2977771223 cites W2133831816 @default.
- W2977771223 cites W2135949063 @default.
- W2977771223 cites W2136590188 @default.
- W2977771223 cites W2136994247 @default.
- W2977771223 cites W2139948451 @default.
- W2977771223 cites W2140094437 @default.
- W2977771223 cites W2140430371 @default.
- W2977771223 cites W2140915719 @default.
- W2977771223 cites W2141133346 @default.
- W2977771223 cites W2146124002 @default.
- W2977771223 cites W2147648317 @default.
- W2977771223 cites W2150168624 @default.