Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977857619> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2977857619 startingPage "46" @default.
- W2977857619 abstract "These days, most general knowledge question-answering systems rely on large-scale knowledge bases comprising billions of facts about millions of entities. Having a structured source of semantic knowledge means that we can answer questions involving single static facts (e.g. “Who was the 8th president of the US?”) or dynamically generated ones (e.g. “How old is Donald Trump?”). More importantly, we can answer questions involving multiple inference steps (“Is the queen older than the president of the US?”). In this talk, I’m going to be discussing some of the unique challenges that are involved with building and maintaining a consistent knowledge base for Alexa, extending it with new facts and using it to serve answers in multiple languages. I will focus on three recent projects from our group. First, a way of measuring the completeness of a knowledge base, that is based on usage patterns. The definition of the usage of the KB is done in terms of the relation distribution of entities seen in question-answer logs. Instead of directly estimating the relation distribution of individual entities, it is generalized to the “class signature” of each entity. For example, users ask for baseball players’ height, age, and batting average, so a knowledge base is complete (with respect to baseball players) if every entity has facts for those three relations. Second, an investigation into fact extraction from unstructured text. I will present a method for creating distant (weak) supervision labels for training a large-scale relation extraction system. I will also discuss the effectiveness of neural network approaches by decoupling the model architecture from the feature design of a state-of-the-art neural network system. Surprisingly, a much simpler classifier trained on similar features performs on par with the highly complex neural network system (at 75x reduction to the training time), suggesting that the features are a bigger contributor to the final performance. Finally, I will present the Fact Extraction and VERification (FEVER) dataset and challenge. The dataset comprises more than 185,000 human-generated claims extracted from Wikipedia pages. False claims were generated by mutating true claims in a variety of ways, some of which were meaningaltering. During the verification step, annotators were required to label a claim for its validity and also supply full-sentence textual evidence from (potentially multiple) Wikipedia articles for the label. With FEVER, we aim to help create a new generation of transparent and interprable knowledge extraction systems." @default.
- W2977857619 created "2019-10-10" @default.
- W2977857619 creator A5026253371 @default.
- W2977857619 date "2018-08-01" @default.
- W2977857619 modified "2023-09-23" @default.
- W2977857619 title "Knowledge Representation and Extraction at Scale" @default.
- W2977857619 hasPublicationYear "2018" @default.
- W2977857619 type Work @default.
- W2977857619 sameAs 2977857619 @default.
- W2977857619 citedByCount "0" @default.
- W2977857619 crossrefType "proceedings-article" @default.
- W2977857619 hasAuthorship W2977857619A5026253371 @default.
- W2977857619 hasConcept C120567893 @default.
- W2977857619 hasConcept C120665830 @default.
- W2977857619 hasConcept C121332964 @default.
- W2977857619 hasConcept C124101348 @default.
- W2977857619 hasConcept C134306372 @default.
- W2977857619 hasConcept C136264566 @default.
- W2977857619 hasConcept C153604712 @default.
- W2977857619 hasConcept C154945302 @default.
- W2977857619 hasConcept C162324750 @default.
- W2977857619 hasConcept C17231256 @default.
- W2977857619 hasConcept C192209626 @default.
- W2977857619 hasConcept C204321447 @default.
- W2977857619 hasConcept C23123220 @default.
- W2977857619 hasConcept C2522767166 @default.
- W2977857619 hasConcept C25343380 @default.
- W2977857619 hasConcept C2776214188 @default.
- W2977857619 hasConcept C2777212361 @default.
- W2977857619 hasConcept C2778755073 @default.
- W2977857619 hasConcept C33923547 @default.
- W2977857619 hasConcept C41008148 @default.
- W2977857619 hasConcept C44291984 @default.
- W2977857619 hasConcept C4554734 @default.
- W2977857619 hasConcept C62520636 @default.
- W2977857619 hasConcept C90329073 @default.
- W2977857619 hasConceptScore W2977857619C120567893 @default.
- W2977857619 hasConceptScore W2977857619C120665830 @default.
- W2977857619 hasConceptScore W2977857619C121332964 @default.
- W2977857619 hasConceptScore W2977857619C124101348 @default.
- W2977857619 hasConceptScore W2977857619C134306372 @default.
- W2977857619 hasConceptScore W2977857619C136264566 @default.
- W2977857619 hasConceptScore W2977857619C153604712 @default.
- W2977857619 hasConceptScore W2977857619C154945302 @default.
- W2977857619 hasConceptScore W2977857619C162324750 @default.
- W2977857619 hasConceptScore W2977857619C17231256 @default.
- W2977857619 hasConceptScore W2977857619C192209626 @default.
- W2977857619 hasConceptScore W2977857619C204321447 @default.
- W2977857619 hasConceptScore W2977857619C23123220 @default.
- W2977857619 hasConceptScore W2977857619C2522767166 @default.
- W2977857619 hasConceptScore W2977857619C25343380 @default.
- W2977857619 hasConceptScore W2977857619C2776214188 @default.
- W2977857619 hasConceptScore W2977857619C2777212361 @default.
- W2977857619 hasConceptScore W2977857619C2778755073 @default.
- W2977857619 hasConceptScore W2977857619C33923547 @default.
- W2977857619 hasConceptScore W2977857619C41008148 @default.
- W2977857619 hasConceptScore W2977857619C44291984 @default.
- W2977857619 hasConceptScore W2977857619C4554734 @default.
- W2977857619 hasConceptScore W2977857619C62520636 @default.
- W2977857619 hasConceptScore W2977857619C90329073 @default.
- W2977857619 hasLocation W29778576191 @default.
- W2977857619 hasOpenAccess W2977857619 @default.
- W2977857619 hasPrimaryLocation W29778576191 @default.
- W2977857619 hasRelatedWork W2002371870 @default.
- W2977857619 hasRelatedWork W208946482 @default.
- W2977857619 hasRelatedWork W2253068693 @default.
- W2977857619 hasRelatedWork W2471900581 @default.
- W2977857619 hasRelatedWork W2585653752 @default.
- W2977857619 hasRelatedWork W2754194354 @default.
- W2977857619 hasRelatedWork W2755637027 @default.
- W2977857619 hasRelatedWork W2767753481 @default.
- W2977857619 hasRelatedWork W2792287767 @default.
- W2977857619 hasRelatedWork W2798483934 @default.
- W2977857619 hasRelatedWork W2868095129 @default.
- W2977857619 hasRelatedWork W2892172368 @default.
- W2977857619 hasRelatedWork W2893333632 @default.
- W2977857619 hasRelatedWork W2898348264 @default.
- W2977857619 hasRelatedWork W2918529946 @default.
- W2977857619 hasRelatedWork W2945950025 @default.
- W2977857619 hasRelatedWork W2981876780 @default.
- W2977857619 hasRelatedWork W3090028958 @default.
- W2977857619 hasRelatedWork W3157008829 @default.
- W2977857619 hasRelatedWork W3171784725 @default.
- W2977857619 isParatext "false" @default.
- W2977857619 isRetracted "false" @default.
- W2977857619 magId "2977857619" @default.
- W2977857619 workType "article" @default.