Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977881416> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2977881416 abstract "Rain gauges are sensors providing direct measurement of precipitation intensity at individual point sites, and, usually, spatial interpolation methods are used to obtain an estimate of the precipitation field over the entire area of interest. Among them, Kriging with External Drift (KED) is a largely used and well-recognized method in this field. However, interpolation methods need to work with real-time data, and therefore can be hardly used in real-time scenarios. To overcome this issue, we propose a general machine learning framework, which can be trained offline, based on a deep learning architecture, also integrating information derived from remote sensing measurements such as weather radars and satellites. The framework allows to provide accurate estimations of the rainfall in the areas where no rain gauge data is available. Experimental results, conducted on real data concerning a southern region in Italy, provided by the Department of Civil Protection (DCP), show significant improvement in comparison with KED and other machine learning techniques." @default.
- W2977881416 created "2019-10-10" @default.
- W2977881416 creator A5003618685 @default.
- W2977881416 creator A5013173651 @default.
- W2977881416 creator A5025844977 @default.
- W2977881416 creator A5073102176 @default.
- W2977881416 date "2019-07-01" @default.
- W2977881416 modified "2023-09-25" @default.
- W2977881416 title "A Deep Learning based architecture for rainfall estimation integrating heterogeneous data sources" @default.
- W2977881416 cites W2012159836 @default.
- W2977881416 cites W2035802397 @default.
- W2977881416 cites W2055308682 @default.
- W2977881416 cites W2142854301 @default.
- W2977881416 cites W2162789299 @default.
- W2977881416 cites W2166452583 @default.
- W2977881416 cites W2170505850 @default.
- W2977881416 cites W2177044256 @default.
- W2977881416 cites W2264487822 @default.
- W2977881416 cites W2275281333 @default.
- W2977881416 cites W2340938351 @default.
- W2977881416 cites W2559001317 @default.
- W2977881416 cites W2735245265 @default.
- W2977881416 cites W2897265228 @default.
- W2977881416 doi "https://doi.org/10.1109/ijcnn.2019.8852229" @default.
- W2977881416 hasPublicationYear "2019" @default.
- W2977881416 type Work @default.
- W2977881416 sameAs 2977881416 @default.
- W2977881416 citedByCount "5" @default.
- W2977881416 countsByYear W29778814162020 @default.
- W2977881416 countsByYear W29778814162022 @default.
- W2977881416 countsByYear W29778814162023 @default.
- W2977881416 crossrefType "proceedings-article" @default.
- W2977881416 hasAuthorship W2977881416A5003618685 @default.
- W2977881416 hasAuthorship W2977881416A5013173651 @default.
- W2977881416 hasAuthorship W2977881416A5025844977 @default.
- W2977881416 hasAuthorship W2977881416A5073102176 @default.
- W2977881416 hasConcept C108583219 @default.
- W2977881416 hasConcept C115903868 @default.
- W2977881416 hasConcept C119857082 @default.
- W2977881416 hasConcept C123657996 @default.
- W2977881416 hasConcept C127413603 @default.
- W2977881416 hasConcept C154945302 @default.
- W2977881416 hasConcept C166957645 @default.
- W2977881416 hasConcept C201995342 @default.
- W2977881416 hasConcept C205649164 @default.
- W2977881416 hasConcept C2522767166 @default.
- W2977881416 hasConcept C41008148 @default.
- W2977881416 hasConcept C67186912 @default.
- W2977881416 hasConcept C96250715 @default.
- W2977881416 hasConceptScore W2977881416C108583219 @default.
- W2977881416 hasConceptScore W2977881416C115903868 @default.
- W2977881416 hasConceptScore W2977881416C119857082 @default.
- W2977881416 hasConceptScore W2977881416C123657996 @default.
- W2977881416 hasConceptScore W2977881416C127413603 @default.
- W2977881416 hasConceptScore W2977881416C154945302 @default.
- W2977881416 hasConceptScore W2977881416C166957645 @default.
- W2977881416 hasConceptScore W2977881416C201995342 @default.
- W2977881416 hasConceptScore W2977881416C205649164 @default.
- W2977881416 hasConceptScore W2977881416C2522767166 @default.
- W2977881416 hasConceptScore W2977881416C41008148 @default.
- W2977881416 hasConceptScore W2977881416C67186912 @default.
- W2977881416 hasConceptScore W2977881416C96250715 @default.
- W2977881416 hasLocation W29778814161 @default.
- W2977881416 hasOpenAccess W2977881416 @default.
- W2977881416 hasPrimaryLocation W29778814161 @default.
- W2977881416 hasRelatedWork W2922457425 @default.
- W2977881416 hasRelatedWork W3014300295 @default.
- W2977881416 hasRelatedWork W3164822677 @default.
- W2977881416 hasRelatedWork W3215138031 @default.
- W2977881416 hasRelatedWork W4223943233 @default.
- W2977881416 hasRelatedWork W4225161397 @default.
- W2977881416 hasRelatedWork W4250304930 @default.
- W2977881416 hasRelatedWork W4299487748 @default.
- W2977881416 hasRelatedWork W4309045103 @default.
- W2977881416 hasRelatedWork W4312200629 @default.
- W2977881416 isParatext "false" @default.
- W2977881416 isRetracted "false" @default.
- W2977881416 magId "2977881416" @default.
- W2977881416 workType "article" @default.