Matches in SemOpenAlex for { <https://semopenalex.org/work/W2977996757> ?p ?o ?g. }
- W2977996757 endingPage "818" @default.
- W2977996757 startingPage "802" @default.
- W2977996757 abstract "High-dimensional linear regression has been intensively studied in the community of statistics in the last two decades. For the convenience of theoretical analyses, classical methods usually assume independent observations and sub-Gaussian-tailed errors. However, neither of them hold in many real high-dimensional time-series data. Recently [Sun, Zhou, Fan, 2019, J. Amer. Stat. Assoc., in press] proposed Adaptive Huber Regression (AHR) to address the issue of heavy-tailed errors. They discover that the robustification parameter of the Huber loss should adapt to the sample size, the dimensionality, and the moments of the heavy-tailed errors. We progress in a vertical direction and justify AHR on dependent observations. Specifically, we consider an important dependence structure - Markov dependence. Our results show that the Markov dependence impacts on the adaption of the robustification parameter and the estimation of regression coefficients in the way that the sample size should be discounted by a factor depending on the spectral gap of the underlying Markov chain." @default.
- W2977996757 created "2019-10-10" @default.
- W2977996757 creator A5018040719 @default.
- W2977996757 creator A5031910872 @default.
- W2977996757 creator A5088044292 @default.
- W2977996757 date "2022-08-01" @default.
- W2977996757 modified "2023-10-18" @default.
- W2977996757 title "Adaptive Huber regression on Markov-dependent data" @default.
- W2977996757 cites W1971600338 @default.
- W2977996757 cites W1985380836 @default.
- W2977996757 cites W1987445923 @default.
- W2977996757 cites W2011194038 @default.
- W2977996757 cites W2022115022 @default.
- W2977996757 cites W2035564857 @default.
- W2977996757 cites W2036185487 @default.
- W2977996757 cites W2038601479 @default.
- W2977996757 cites W2046033161 @default.
- W2977996757 cites W2054435707 @default.
- W2977996757 cites W2054924908 @default.
- W2977996757 cites W2058713030 @default.
- W2977996757 cites W2059982399 @default.
- W2977996757 cites W2065742895 @default.
- W2977996757 cites W2074476634 @default.
- W2977996757 cites W2074682976 @default.
- W2977996757 cites W2076040334 @default.
- W2977996757 cites W2088292398 @default.
- W2977996757 cites W2100011707 @default.
- W2977996757 cites W2114060717 @default.
- W2977996757 cites W2116581043 @default.
- W2977996757 cites W2125151258 @default.
- W2977996757 cites W2134305330 @default.
- W2977996757 cites W2140400853 @default.
- W2977996757 cites W2257263437 @default.
- W2977996757 cites W2338469198 @default.
- W2977996757 cites W2896398456 @default.
- W2977996757 cites W2914512742 @default.
- W2977996757 cites W2963927498 @default.
- W2977996757 cites W2963943067 @default.
- W2977996757 cites W2964248738 @default.
- W2977996757 cites W3023877248 @default.
- W2977996757 cites W3101473884 @default.
- W2977996757 cites W3192637965 @default.
- W2977996757 doi "https://doi.org/10.1016/j.spa.2019.09.004" @default.
- W2977996757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35756192" @default.
- W2977996757 hasPublicationYear "2022" @default.
- W2977996757 type Work @default.
- W2977996757 sameAs 2977996757 @default.
- W2977996757 citedByCount "6" @default.
- W2977996757 countsByYear W29779967572020 @default.
- W2977996757 countsByYear W29779967572021 @default.
- W2977996757 countsByYear W29779967572022 @default.
- W2977996757 countsByYear W29779967572023 @default.
- W2977996757 crossrefType "journal-article" @default.
- W2977996757 hasAuthorship W2977996757A5018040719 @default.
- W2977996757 hasAuthorship W2977996757A5031910872 @default.
- W2977996757 hasAuthorship W2977996757A5088044292 @default.
- W2977996757 hasBestOaLocation W29779967571 @default.
- W2977996757 hasConcept C105795698 @default.
- W2977996757 hasConcept C111030470 @default.
- W2977996757 hasConcept C121332964 @default.
- W2977996757 hasConcept C121864883 @default.
- W2977996757 hasConcept C149782125 @default.
- W2977996757 hasConcept C161584116 @default.
- W2977996757 hasConcept C163716315 @default.
- W2977996757 hasConcept C2777606061 @default.
- W2977996757 hasConcept C2778584072 @default.
- W2977996757 hasConcept C28826006 @default.
- W2977996757 hasConcept C33923547 @default.
- W2977996757 hasConcept C48921125 @default.
- W2977996757 hasConcept C62520636 @default.
- W2977996757 hasConcept C79337645 @default.
- W2977996757 hasConcept C83546350 @default.
- W2977996757 hasConcept C98763669 @default.
- W2977996757 hasConceptScore W2977996757C105795698 @default.
- W2977996757 hasConceptScore W2977996757C111030470 @default.
- W2977996757 hasConceptScore W2977996757C121332964 @default.
- W2977996757 hasConceptScore W2977996757C121864883 @default.
- W2977996757 hasConceptScore W2977996757C149782125 @default.
- W2977996757 hasConceptScore W2977996757C161584116 @default.
- W2977996757 hasConceptScore W2977996757C163716315 @default.
- W2977996757 hasConceptScore W2977996757C2777606061 @default.
- W2977996757 hasConceptScore W2977996757C2778584072 @default.
- W2977996757 hasConceptScore W2977996757C28826006 @default.
- W2977996757 hasConceptScore W2977996757C33923547 @default.
- W2977996757 hasConceptScore W2977996757C48921125 @default.
- W2977996757 hasConceptScore W2977996757C62520636 @default.
- W2977996757 hasConceptScore W2977996757C79337645 @default.
- W2977996757 hasConceptScore W2977996757C83546350 @default.
- W2977996757 hasConceptScore W2977996757C98763669 @default.
- W2977996757 hasFunder F4320332161 @default.
- W2977996757 hasLocation W29779967571 @default.
- W2977996757 hasLocation W29779967572 @default.
- W2977996757 hasLocation W29779967573 @default.
- W2977996757 hasOpenAccess W2977996757 @default.
- W2977996757 hasPrimaryLocation W29779967571 @default.
- W2977996757 hasRelatedWork W1998878505 @default.
- W2977996757 hasRelatedWork W2018697919 @default.
- W2977996757 hasRelatedWork W2068875390 @default.