Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978110807> ?p ?o ?g. }
- W2978110807 endingPage "2915" @default.
- W2978110807 startingPage "2904" @default.
- W2978110807 abstract "Organic solar cells (OSCs) have emerged as one promising sustainable energy resource since the introduction of state-of-the-art bulk heterojunction (BHJ) device structure in early 1990s. Impressively developed molecular design methodologies in the past decade have led researchers toward utilizing more suitable pairs of low (p-type) and high (n-type) electron affinity organic semiconducting materials. Among other attributes, versatile absorption capabilities of these materials highlight their favorable utilization in a single layer BHJ structure. Interaction of these verstile organic materials may lead to explicit interfaces, phase distributions, and crystalline nanostructures. Structural characterization techniques involving soft and hard X-rays have enabled us to measure these morphology parameters quantitatively including their string correlation with photovoltaic (PV) parameters. Favorable processing techniques have been adopted to realize auspicious interfacial areas and charge percolations in bulk toward efficient short circuit current (JSC) and fill factor (FF) values. Collaborative efforts in the fields of chemical structure design of materials, device characterization, and engineering have pushed the power conversion efficiencies (PCEs) of OSCs to 16%. However, the single layer BHJ structure still requires further optimizations for the extension of their PCEs toward the theoretical limit. Maximum utilization of solar energy by organic blend films is the key to match their potential with inorganic/perovskite solar cells. Having comparable JSC and FF values in organic versus inorganic photovoltaic devices, open circuit voltage (VOC) is the only PV parameter limiting the development of OSCs in comparison to their inorganic competitors. This is due to unfavorable competition between rates of charge generation and recombination. Loss of charges during these generation and recombination processes account for the energy loss of the device, ranging from 0.6 to 1.0 V in state-of-the-art OSCs. Highly efficient (14-16%) single layer BHJ devices usually suffer from high energy loss with VOC limited to 0.9 V. Comparatively, devices with reported VOC > 0.9 V suffer from poor JSC and FF values due to unfavorable interfacial ordering and bulk crystalline nanostructures. First part of the Account will address the charge losses during their transfer (interfacial losses) and influential role of interfacial nanostructures in controlling them toward efficient JSC and VOC values. Later, we will discuss losses during exciton diffusion and free charge transport (bulk losses) toward limited charge extraction. We will debate about the role of donor/acceptor nanostructures in correlation with influential photophysics studies to control these losses in small molecule (SM) acceptor based devices. We search for exaggerated crystalline phases of SM acceptor in competition with polymer donor to realize balanced and more efficient charge percolations. These improved diffusion and transport bulk nanostructures will suppress nonradiative (NR) pathways and bulk charge losses toward simultaneous enhancement of FF and VOC values. Favorable interfacial and bulk morphology will drive efficient diffusion, transfer, transport, and extraction of charges in organic blend films. This Account will guide chemists and engineers to optimize chemical structure design and blend film nanostructures toward suppressed energy loss of OSCs." @default.
- W2978110807 created "2019-10-10" @default.
- W2978110807 creator A5051007268 @default.
- W2978110807 creator A5063775005 @default.
- W2978110807 creator A5079170460 @default.
- W2978110807 date "2019-10-02" @default.
- W2978110807 modified "2023-10-03" @default.
- W2978110807 title "Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells" @default.
- W2978110807 cites W1964754116 @default.
- W2978110807 cites W1973922332 @default.
- W2978110807 cites W1991416999 @default.
- W2978110807 cites W2003293032 @default.
- W2978110807 cites W2005572417 @default.
- W2978110807 cites W2019002703 @default.
- W2978110807 cites W2021763792 @default.
- W2978110807 cites W2026908288 @default.
- W2978110807 cites W2079878344 @default.
- W2978110807 cites W2126595516 @default.
- W2978110807 cites W2300256369 @default.
- W2978110807 cites W2313264138 @default.
- W2978110807 cites W2317600594 @default.
- W2978110807 cites W2324266376 @default.
- W2978110807 cites W2460400503 @default.
- W2978110807 cites W2465723352 @default.
- W2978110807 cites W2512280427 @default.
- W2978110807 cites W2516872126 @default.
- W2978110807 cites W2556981242 @default.
- W2978110807 cites W2557542210 @default.
- W2978110807 cites W2558322090 @default.
- W2978110807 cites W2562570012 @default.
- W2978110807 cites W2576432533 @default.
- W2978110807 cites W2598355492 @default.
- W2978110807 cites W2606733897 @default.
- W2978110807 cites W2608589933 @default.
- W2978110807 cites W2609605779 @default.
- W2978110807 cites W2735710145 @default.
- W2978110807 cites W2742076323 @default.
- W2978110807 cites W2752584863 @default.
- W2978110807 cites W2757152692 @default.
- W2978110807 cites W2763703985 @default.
- W2978110807 cites W2765175117 @default.
- W2978110807 cites W2766503406 @default.
- W2978110807 cites W2767193968 @default.
- W2978110807 cites W2768918326 @default.
- W2978110807 cites W2768973137 @default.
- W2978110807 cites W2769472458 @default.
- W2978110807 cites W2769925805 @default.
- W2978110807 cites W2773531041 @default.
- W2978110807 cites W2774661525 @default.
- W2978110807 cites W2774760743 @default.
- W2978110807 cites W2783044105 @default.
- W2978110807 cites W2784105771 @default.
- W2978110807 cites W2784506527 @default.
- W2978110807 cites W2789483391 @default.
- W2978110807 cites W2794669282 @default.
- W2978110807 cites W2799358616 @default.
- W2978110807 cites W2801801130 @default.
- W2978110807 cites W2804432365 @default.
- W2978110807 cites W2808398665 @default.
- W2978110807 cites W2810130746 @default.
- W2978110807 cites W2834100617 @default.
- W2978110807 cites W2886372125 @default.
- W2978110807 cites W2896518983 @default.
- W2978110807 cites W2909990379 @default.
- W2978110807 cites W2911937767 @default.
- W2978110807 cites W2921396158 @default.
- W2978110807 cites W2928193004 @default.
- W2978110807 doi "https://doi.org/10.1021/acs.accounts.9b00331" @default.
- W2978110807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31577121" @default.
- W2978110807 hasPublicationYear "2019" @default.
- W2978110807 type Work @default.
- W2978110807 sameAs 2978110807 @default.
- W2978110807 citedByCount "47" @default.
- W2978110807 countsByYear W29781108072020 @default.
- W2978110807 countsByYear W29781108072021 @default.
- W2978110807 countsByYear W29781108072022 @default.
- W2978110807 countsByYear W29781108072023 @default.
- W2978110807 crossrefType "journal-article" @default.
- W2978110807 hasAuthorship W2978110807A5051007268 @default.
- W2978110807 hasAuthorship W2978110807A5063775005 @default.
- W2978110807 hasAuthorship W2978110807A5079170460 @default.
- W2978110807 hasConcept C119599485 @default.
- W2978110807 hasConcept C127413603 @default.
- W2978110807 hasConcept C165801399 @default.
- W2978110807 hasConcept C171250308 @default.
- W2978110807 hasConcept C192562407 @default.
- W2978110807 hasConcept C206991015 @default.
- W2978110807 hasConcept C41291067 @default.
- W2978110807 hasConcept C49040817 @default.
- W2978110807 hasConcept C57631264 @default.
- W2978110807 hasConcept C91614233 @default.
- W2978110807 hasConceptScore W2978110807C119599485 @default.
- W2978110807 hasConceptScore W2978110807C127413603 @default.
- W2978110807 hasConceptScore W2978110807C165801399 @default.
- W2978110807 hasConceptScore W2978110807C171250308 @default.
- W2978110807 hasConceptScore W2978110807C192562407 @default.
- W2978110807 hasConceptScore W2978110807C206991015 @default.
- W2978110807 hasConceptScore W2978110807C41291067 @default.