Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978157075> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2978157075 endingPage "4325" @default.
- W2978157075 startingPage "4325" @default.
- W2978157075 abstract "This paper presents a novel model for estimating the number of vehicles along signalized approaches. The proposed estimation algorithm utilizes the adaptive Kalman filter (AKF) to produce reliable traffic vehicle count estimates, considering real-time estimates of the system noise characteristics. The AKF utilizes only real-time probe vehicle data. The AKF is demonstrated to outperform the traditional Kalman filter, reducing the prediction error by up to 29%. In addition, the paper introduces a novel approach that combines the AKF with a neural network (AKFNN) to enhance the vehicle count estimates, where the neural network is employed to estimate the probe vehicles’ market penetration rate. Results indicate that the accuracy of vehicle count estimates is significantly improved using the AKFNN approach (by up to 26%) over the AKF. Moreover, the paper investigates the sensitivity of the proposed AKF model to the initial conditions, such as the initial estimate of vehicle counts, initial mean estimate of the state system, and the initial covariance of the state estimate. The results demonstrate that the AKF is sensitive to the initial conditions. More accurate estimates could be achieved if the initial conditions are appropriately selected. In conclusion, the proposed AKF is more accurate than the traditional Kalman filter. Finally, the AKFNN approach is more accurate than the AKF and the traditional Kalman filter since the AKFNN uses more accurate values of the probe vehicle market penetration rate." @default.
- W2978157075 created "2019-10-10" @default.
- W2978157075 creator A5020173101 @default.
- W2978157075 creator A5041402914 @default.
- W2978157075 creator A5071011518 @default.
- W2978157075 date "2019-10-07" @default.
- W2978157075 modified "2023-10-14" @default.
- W2978157075 title "Developing a Neural–Kalman Filtering Approach for Estimating Traffic Stream Density Using Probe Vehicle Data" @default.
- W2978157075 cites W1973737652 @default.
- W2978157075 cites W1979043343 @default.
- W2978157075 cites W1990265415 @default.
- W2978157075 cites W2013009562 @default.
- W2978157075 cites W2017559197 @default.
- W2978157075 cites W2023255777 @default.
- W2978157075 cites W2041496171 @default.
- W2978157075 cites W2053182354 @default.
- W2978157075 cites W2056145546 @default.
- W2978157075 cites W2105934661 @default.
- W2978157075 cites W2145834063 @default.
- W2978157075 cites W2167864904 @default.
- W2978157075 cites W2596865731 @default.
- W2978157075 cites W2601802123 @default.
- W2978157075 cites W2945170013 @default.
- W2978157075 cites W2963134384 @default.
- W2978157075 cites W4233449324 @default.
- W2978157075 cites W4236058865 @default.
- W2978157075 doi "https://doi.org/10.3390/s19194325" @default.
- W2978157075 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6806210" @default.
- W2978157075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31591292" @default.
- W2978157075 hasPublicationYear "2019" @default.
- W2978157075 type Work @default.
- W2978157075 sameAs 2978157075 @default.
- W2978157075 citedByCount "16" @default.
- W2978157075 countsByYear W29781570752020 @default.
- W2978157075 countsByYear W29781570752021 @default.
- W2978157075 countsByYear W29781570752022 @default.
- W2978157075 countsByYear W29781570752023 @default.
- W2978157075 crossrefType "journal-article" @default.
- W2978157075 hasAuthorship W2978157075A5020173101 @default.
- W2978157075 hasAuthorship W2978157075A5041402914 @default.
- W2978157075 hasAuthorship W2978157075A5071011518 @default.
- W2978157075 hasBestOaLocation W29781570751 @default.
- W2978157075 hasConcept C105795698 @default.
- W2978157075 hasConcept C154945302 @default.
- W2978157075 hasConcept C157286648 @default.
- W2978157075 hasConcept C178650346 @default.
- W2978157075 hasConcept C206833254 @default.
- W2978157075 hasConcept C2775924081 @default.
- W2978157075 hasConcept C33923547 @default.
- W2978157075 hasConcept C41008148 @default.
- W2978157075 hasConcept C47446073 @default.
- W2978157075 hasConcept C50644808 @default.
- W2978157075 hasConceptScore W2978157075C105795698 @default.
- W2978157075 hasConceptScore W2978157075C154945302 @default.
- W2978157075 hasConceptScore W2978157075C157286648 @default.
- W2978157075 hasConceptScore W2978157075C178650346 @default.
- W2978157075 hasConceptScore W2978157075C206833254 @default.
- W2978157075 hasConceptScore W2978157075C2775924081 @default.
- W2978157075 hasConceptScore W2978157075C33923547 @default.
- W2978157075 hasConceptScore W2978157075C41008148 @default.
- W2978157075 hasConceptScore W2978157075C47446073 @default.
- W2978157075 hasConceptScore W2978157075C50644808 @default.
- W2978157075 hasFunder F4320333445 @default.
- W2978157075 hasIssue "19" @default.
- W2978157075 hasLocation W29781570751 @default.
- W2978157075 hasLocation W29781570752 @default.
- W2978157075 hasLocation W29781570753 @default.
- W2978157075 hasLocation W29781570754 @default.
- W2978157075 hasLocation W29781570755 @default.
- W2978157075 hasLocation W29781570756 @default.
- W2978157075 hasOpenAccess W2978157075 @default.
- W2978157075 hasPrimaryLocation W29781570751 @default.
- W2978157075 hasRelatedWork W1583551837 @default.
- W2978157075 hasRelatedWork W1923104924 @default.
- W2978157075 hasRelatedWork W2156236501 @default.
- W2978157075 hasRelatedWork W2532934387 @default.
- W2978157075 hasRelatedWork W2939299310 @default.
- W2978157075 hasRelatedWork W2945197240 @default.
- W2978157075 hasRelatedWork W3217598563 @default.
- W2978157075 hasRelatedWork W4302337189 @default.
- W2978157075 hasRelatedWork W4310470578 @default.
- W2978157075 hasRelatedWork W959416163 @default.
- W2978157075 hasVolume "19" @default.
- W2978157075 isParatext "false" @default.
- W2978157075 isRetracted "false" @default.
- W2978157075 magId "2978157075" @default.
- W2978157075 workType "article" @default.