Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978397383> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2978397383 abstract "The automated credit scoring tools play a crucial role in many financial environments, since they are able to perform a real-time evaluation of a user (e.g., a loan applicant) on the basis of several solvency criteria, without the aid of human operators. Such an automation allows who work and offer services in the financial area to take quick decisions with regard to different services, first and foremost those concerning the consumer credit, whose requests have exponentially increased over the last years. In order to face some well-known problems related to the state-of-the-art credit scoring approaches, this paper formalizes a novel data model that we called Discretized Enriched Data (DED), which operates by transforming the original feature space in order to improve the performance of the credit scoring machine learning algorithms. The idea behind the proposed DED model revolves around two processes, the first one aimed to reduce the number of feature patterns through a data discretization process, and the second one aimed to enrich the discretized data by adding several meta-features. The data discretization faces the problem of heterogeneity, which characterizes such a domain, whereas the data enrichment works on the related loss of information by adding meta-features that improve the data characterization. Our model has been evaluated in the context of real-world datasets with different sizes and levels of data unbalance, which are considered a benchmark in credit scoring literature. The obtained results indicate that it is able to improve the performance of one of the most performing machine learning algorithm largely used in this field, opening up new perspectives for the definition of more effective credit scoring solutions." @default.
- W2978397383 created "2019-10-10" @default.
- W2978397383 creator A5014673075 @default.
- W2978397383 creator A5069275031 @default.
- W2978397383 creator A5076632223 @default.
- W2978397383 creator A5079928291 @default.
- W2978397383 creator A5080184560 @default.
- W2978397383 date "2019-01-01" @default.
- W2978397383 modified "2023-10-17" @default.
- W2978397383 title "A Discretized Enriched Technique to Enhance Machine Learning Performance in Credit Scoring" @default.
- W2978397383 cites W1488960379 @default.
- W2978397383 cites W1542270631 @default.
- W2978397383 cites W1564856853 @default.
- W2978397383 cites W1977009091 @default.
- W2978397383 cites W1985789779 @default.
- W2978397383 cites W1994085451 @default.
- W2978397383 cites W2058988827 @default.
- W2978397383 cites W2068258779 @default.
- W2978397383 cites W2077847090 @default.
- W2978397383 cites W2096451472 @default.
- W2978397383 cites W2097951963 @default.
- W2978397383 cites W2102148524 @default.
- W2978397383 cites W2145680191 @default.
- W2978397383 cites W2162284280 @default.
- W2978397383 cites W2165721426 @default.
- W2978397383 cites W2208635417 @default.
- W2978397383 cites W2273893358 @default.
- W2978397383 cites W2297432279 @default.
- W2978397383 cites W2308685538 @default.
- W2978397383 cites W2524620548 @default.
- W2978397383 cites W2549367985 @default.
- W2978397383 cites W2551616007 @default.
- W2978397383 cites W2557831587 @default.
- W2978397383 cites W2560858617 @default.
- W2978397383 cites W2563227985 @default.
- W2978397383 cites W2586297576 @default.
- W2978397383 cites W2606916050 @default.
- W2978397383 cites W2736459173 @default.
- W2978397383 cites W2789893186 @default.
- W2978397383 cites W2792224072 @default.
- W2978397383 cites W2792400334 @default.
- W2978397383 cites W2801727068 @default.
- W2978397383 cites W2803685711 @default.
- W2978397383 cites W2893262342 @default.
- W2978397383 cites W2894007752 @default.
- W2978397383 cites W2896122694 @default.
- W2978397383 cites W2901691923 @default.
- W2978397383 cites W2918408501 @default.
- W2978397383 cites W2925310892 @default.
- W2978397383 cites W2934846959 @default.
- W2978397383 cites W2944116982 @default.
- W2978397383 cites W46659105 @default.
- W2978397383 cites W2804109237 @default.
- W2978397383 doi "https://doi.org/10.5220/0008377702020213" @default.
- W2978397383 hasPublicationYear "2019" @default.
- W2978397383 type Work @default.
- W2978397383 sameAs 2978397383 @default.
- W2978397383 citedByCount "3" @default.
- W2978397383 countsByYear W29783973832020 @default.
- W2978397383 countsByYear W29783973832021 @default.
- W2978397383 countsByYear W29783973832023 @default.
- W2978397383 crossrefType "proceedings-article" @default.
- W2978397383 hasAuthorship W2978397383A5014673075 @default.
- W2978397383 hasAuthorship W2978397383A5069275031 @default.
- W2978397383 hasAuthorship W2978397383A5076632223 @default.
- W2978397383 hasAuthorship W2978397383A5079928291 @default.
- W2978397383 hasAuthorship W2978397383A5080184560 @default.
- W2978397383 hasBestOaLocation W29783973831 @default.
- W2978397383 hasConcept C119857082 @default.
- W2978397383 hasConcept C134306372 @default.
- W2978397383 hasConcept C154945302 @default.
- W2978397383 hasConcept C33923547 @default.
- W2978397383 hasConcept C41008148 @default.
- W2978397383 hasConcept C73000952 @default.
- W2978397383 hasConceptScore W2978397383C119857082 @default.
- W2978397383 hasConceptScore W2978397383C134306372 @default.
- W2978397383 hasConceptScore W2978397383C154945302 @default.
- W2978397383 hasConceptScore W2978397383C33923547 @default.
- W2978397383 hasConceptScore W2978397383C41008148 @default.
- W2978397383 hasConceptScore W2978397383C73000952 @default.
- W2978397383 hasLocation W29783973831 @default.
- W2978397383 hasOpenAccess W2978397383 @default.
- W2978397383 hasPrimaryLocation W29783973831 @default.
- W2978397383 hasRelatedWork W2961085424 @default.
- W2978397383 hasRelatedWork W3046775127 @default.
- W2978397383 hasRelatedWork W3170094116 @default.
- W2978397383 hasRelatedWork W3209574120 @default.
- W2978397383 hasRelatedWork W4205958290 @default.
- W2978397383 hasRelatedWork W4285260836 @default.
- W2978397383 hasRelatedWork W4286629047 @default.
- W2978397383 hasRelatedWork W4306321456 @default.
- W2978397383 hasRelatedWork W4306674287 @default.
- W2978397383 hasRelatedWork W4224009465 @default.
- W2978397383 isParatext "false" @default.
- W2978397383 isRetracted "false" @default.
- W2978397383 magId "2978397383" @default.
- W2978397383 workType "article" @default.