Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978831816> ?p ?o ?g. }
- W2978831816 endingPage "3258" @default.
- W2978831816 startingPage "3245" @default.
- W2978831816 abstract "Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms." @default.
- W2978831816 created "2019-10-10" @default.
- W2978831816 creator A5005183926 @default.
- W2978831816 creator A5011506864 @default.
- W2978831816 creator A5050630882 @default.
- W2978831816 creator A5054791684 @default.
- W2978831816 creator A5067858777 @default.
- W2978831816 creator A5080902896 @default.
- W2978831816 date "2020-09-01" @default.
- W2978831816 modified "2023-10-18" @default.
- W2978831816 title "Semi-Supervised Graph Regularized Deep NMF With Bi-Orthogonal Constraints for Data Representation" @default.
- W2978831816 cites W1243961807 @default.
- W2978831816 cites W1753149633 @default.
- W2978831816 cites W1902027874 @default.
- W2978831816 cites W2003684104 @default.
- W2978831816 cites W2005676288 @default.
- W2978831816 cites W2023512014 @default.
- W2978831816 cites W2043545458 @default.
- W2978831816 cites W2104819583 @default.
- W2978831816 cites W2108119513 @default.
- W2978831816 cites W2108433027 @default.
- W2978831816 cites W2112104211 @default.
- W2978831816 cites W2143688709 @default.
- W2978831816 cites W2167686991 @default.
- W2978831816 cites W2189422931 @default.
- W2978831816 cites W2246035736 @default.
- W2978831816 cites W2256361316 @default.
- W2978831816 cites W2262946425 @default.
- W2978831816 cites W2276155953 @default.
- W2978831816 cites W2407348013 @default.
- W2978831816 cites W2488277326 @default.
- W2978831816 cites W2520964758 @default.
- W2978831816 cites W2546490901 @default.
- W2978831816 cites W2569890902 @default.
- W2978831816 cites W2594857575 @default.
- W2978831816 cites W2607323999 @default.
- W2978831816 cites W2622920929 @default.
- W2978831816 cites W2743475884 @default.
- W2978831816 cites W2773071069 @default.
- W2978831816 cites W2776766374 @default.
- W2978831816 cites W2781571649 @default.
- W2978831816 cites W2793733641 @default.
- W2978831816 cites W2905739540 @default.
- W2978831816 cites W2964188889 @default.
- W2978831816 doi "https://doi.org/10.1109/tnnls.2019.2939637" @default.
- W2978831816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31603802" @default.
- W2978831816 hasPublicationYear "2020" @default.
- W2978831816 type Work @default.
- W2978831816 sameAs 2978831816 @default.
- W2978831816 citedByCount "37" @default.
- W2978831816 countsByYear W29788318162019 @default.
- W2978831816 countsByYear W29788318162020 @default.
- W2978831816 countsByYear W29788318162021 @default.
- W2978831816 countsByYear W29788318162022 @default.
- W2978831816 countsByYear W29788318162023 @default.
- W2978831816 crossrefType "journal-article" @default.
- W2978831816 hasAuthorship W2978831816A5005183926 @default.
- W2978831816 hasAuthorship W2978831816A5011506864 @default.
- W2978831816 hasAuthorship W2978831816A5050630882 @default.
- W2978831816 hasAuthorship W2978831816A5054791684 @default.
- W2978831816 hasAuthorship W2978831816A5067858777 @default.
- W2978831816 hasAuthorship W2978831816A5080902896 @default.
- W2978831816 hasConcept C115178988 @default.
- W2978831816 hasConcept C121332964 @default.
- W2978831816 hasConcept C132525143 @default.
- W2978831816 hasConcept C151876577 @default.
- W2978831816 hasConcept C152671427 @default.
- W2978831816 hasConcept C153180895 @default.
- W2978831816 hasConcept C154945302 @default.
- W2978831816 hasConcept C158693339 @default.
- W2978831816 hasConcept C184509293 @default.
- W2978831816 hasConcept C41008148 @default.
- W2978831816 hasConcept C42355184 @default.
- W2978831816 hasConcept C58973888 @default.
- W2978831816 hasConcept C59404180 @default.
- W2978831816 hasConcept C62520636 @default.
- W2978831816 hasConcept C70518039 @default.
- W2978831816 hasConcept C73555534 @default.
- W2978831816 hasConcept C80444323 @default.
- W2978831816 hasConceptScore W2978831816C115178988 @default.
- W2978831816 hasConceptScore W2978831816C121332964 @default.
- W2978831816 hasConceptScore W2978831816C132525143 @default.
- W2978831816 hasConceptScore W2978831816C151876577 @default.
- W2978831816 hasConceptScore W2978831816C152671427 @default.
- W2978831816 hasConceptScore W2978831816C153180895 @default.
- W2978831816 hasConceptScore W2978831816C154945302 @default.
- W2978831816 hasConceptScore W2978831816C158693339 @default.
- W2978831816 hasConceptScore W2978831816C184509293 @default.
- W2978831816 hasConceptScore W2978831816C41008148 @default.
- W2978831816 hasConceptScore W2978831816C42355184 @default.
- W2978831816 hasConceptScore W2978831816C58973888 @default.
- W2978831816 hasConceptScore W2978831816C59404180 @default.
- W2978831816 hasConceptScore W2978831816C62520636 @default.
- W2978831816 hasConceptScore W2978831816C70518039 @default.
- W2978831816 hasConceptScore W2978831816C73555534 @default.
- W2978831816 hasConceptScore W2978831816C80444323 @default.
- W2978831816 hasFunder F4320320006 @default.
- W2978831816 hasFunder F4320321001 @default.