Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978903722> ?p ?o ?g. }
- W2978903722 abstract "Large-scale task processing has become one of the research hotspots in big data analysis and processing. Nowadays, some large-scale task processing methods based on deep neural networks have been proposed continually. Since the training of these models is always based on historical data, there are many tasks that can't be recognized and processed via previous knowledge and experience in the actual applications. Moreover, the issue of model over-fitting is prone to occur in the process of using deep learning for complex structures learning. Based on this argument, this paper has proposed an improved large-scale task processing approach, Tard (large-scale Tasks processing based on Adaptive dropout deep computing and Reinforcement learning for big Data). We design an adaptive Dropout deep computing model based virtual network mapping method to achieve large-scale task allocation. Meanwhile, according to the fact that task requests in training set do not always possess corresponding labels, we employ the policy gradient and back propagation for model training, so that the virtual node mapping scheme can continuously evolve towards the direction of higher revenue. Eventually, each task request can be allocated onto the appropriate task processing node to achieve efficient execution. The experimental results show that Tard can not only effectively avoid model over-fitting, but also improve the capability of task request recognition and processing in actual application while satisfying large-scale task requests." @default.
- W2978903722 created "2019-10-10" @default.
- W2978903722 creator A5000892024 @default.
- W2978903722 creator A5023902435 @default.
- W2978903722 creator A5027795501 @default.
- W2978903722 creator A5054683234 @default.
- W2978903722 creator A5068477244 @default.
- W2978903722 date "2019-08-01" @default.
- W2978903722 modified "2023-09-26" @default.
- W2978903722 title "Explore adaptive dropout deep computing and reinforcement learning to large-scale tasks processing for big data" @default.
- W2978903722 cites W1034159276 @default.
- W2978903722 cites W1512958078 @default.
- W2978903722 cites W2515300481 @default.
- W2978903722 cites W2517850251 @default.
- W2978903722 cites W2602948783 @default.
- W2978903722 cites W2607223307 @default.
- W2978903722 cites W2750716688 @default.
- W2978903722 cites W2756144809 @default.
- W2978903722 cites W2765921558 @default.
- W2978903722 cites W2789811186 @default.
- W2978903722 cites W2790966663 @default.
- W2978903722 cites W2791025763 @default.
- W2978903722 cites W2793067058 @default.
- W2978903722 cites W2811483498 @default.
- W2978903722 cites W2918523967 @default.
- W2978903722 cites W2963695313 @default.
- W2978903722 cites W2963982097 @default.
- W2978903722 doi "https://doi.org/10.1109/iccchina.2019.8855933" @default.
- W2978903722 hasPublicationYear "2019" @default.
- W2978903722 type Work @default.
- W2978903722 sameAs 2978903722 @default.
- W2978903722 citedByCount "1" @default.
- W2978903722 countsByYear W29789037222023 @default.
- W2978903722 crossrefType "proceedings-article" @default.
- W2978903722 hasAuthorship W2978903722A5000892024 @default.
- W2978903722 hasAuthorship W2978903722A5023902435 @default.
- W2978903722 hasAuthorship W2978903722A5027795501 @default.
- W2978903722 hasAuthorship W2978903722A5054683234 @default.
- W2978903722 hasAuthorship W2978903722A5068477244 @default.
- W2978903722 hasConcept C108583219 @default.
- W2978903722 hasConcept C119857082 @default.
- W2978903722 hasConcept C120314980 @default.
- W2978903722 hasConcept C121332964 @default.
- W2978903722 hasConcept C124101348 @default.
- W2978903722 hasConcept C127413603 @default.
- W2978903722 hasConcept C138827492 @default.
- W2978903722 hasConcept C154945302 @default.
- W2978903722 hasConcept C162324750 @default.
- W2978903722 hasConcept C177264268 @default.
- W2978903722 hasConcept C187736073 @default.
- W2978903722 hasConcept C199360897 @default.
- W2978903722 hasConcept C2776145597 @default.
- W2978903722 hasConcept C2778755073 @default.
- W2978903722 hasConcept C2780451532 @default.
- W2978903722 hasConcept C41008148 @default.
- W2978903722 hasConcept C50644808 @default.
- W2978903722 hasConcept C62520636 @default.
- W2978903722 hasConcept C62611344 @default.
- W2978903722 hasConcept C66938386 @default.
- W2978903722 hasConcept C75684735 @default.
- W2978903722 hasConcept C77088390 @default.
- W2978903722 hasConcept C97541855 @default.
- W2978903722 hasConceptScore W2978903722C108583219 @default.
- W2978903722 hasConceptScore W2978903722C119857082 @default.
- W2978903722 hasConceptScore W2978903722C120314980 @default.
- W2978903722 hasConceptScore W2978903722C121332964 @default.
- W2978903722 hasConceptScore W2978903722C124101348 @default.
- W2978903722 hasConceptScore W2978903722C127413603 @default.
- W2978903722 hasConceptScore W2978903722C138827492 @default.
- W2978903722 hasConceptScore W2978903722C154945302 @default.
- W2978903722 hasConceptScore W2978903722C162324750 @default.
- W2978903722 hasConceptScore W2978903722C177264268 @default.
- W2978903722 hasConceptScore W2978903722C187736073 @default.
- W2978903722 hasConceptScore W2978903722C199360897 @default.
- W2978903722 hasConceptScore W2978903722C2776145597 @default.
- W2978903722 hasConceptScore W2978903722C2778755073 @default.
- W2978903722 hasConceptScore W2978903722C2780451532 @default.
- W2978903722 hasConceptScore W2978903722C41008148 @default.
- W2978903722 hasConceptScore W2978903722C50644808 @default.
- W2978903722 hasConceptScore W2978903722C62520636 @default.
- W2978903722 hasConceptScore W2978903722C62611344 @default.
- W2978903722 hasConceptScore W2978903722C66938386 @default.
- W2978903722 hasConceptScore W2978903722C75684735 @default.
- W2978903722 hasConceptScore W2978903722C77088390 @default.
- W2978903722 hasConceptScore W2978903722C97541855 @default.
- W2978903722 hasLocation W29789037221 @default.
- W2978903722 hasOpenAccess W2978903722 @default.
- W2978903722 hasPrimaryLocation W29789037221 @default.
- W2978903722 hasRelatedWork W3014300295 @default.
- W2978903722 hasRelatedWork W3164822677 @default.
- W2978903722 hasRelatedWork W4223943233 @default.
- W2978903722 hasRelatedWork W4225161397 @default.
- W2978903722 hasRelatedWork W4250304930 @default.
- W2978903722 hasRelatedWork W4312200629 @default.
- W2978903722 hasRelatedWork W4360585206 @default.
- W2978903722 hasRelatedWork W4364306694 @default.
- W2978903722 hasRelatedWork W4380075502 @default.
- W2978903722 hasRelatedWork W4380086463 @default.
- W2978903722 isParatext "false" @default.
- W2978903722 isRetracted "false" @default.