Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978959791> ?p ?o ?g. }
- W2978959791 endingPage "2307" @default.
- W2978959791 startingPage "2307" @default.
- W2978959791 abstract "A new satellite-based technique for rainfall retrieval in high spatio-temporal resolution (3 km, 15 min) for Iran is presented. The algorithm is based on the infrared bands of the Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG SEVIRI). Random forest models using microwave-only rainfall information of the Integrated Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM) (IMERG) product as a reference were developed to (i) delineate the rainfall area and (ii) to assign the rainfall rate. The method was validated against independent microwave-only GPM IMERG rainfall data not used for model training. Additionally, the new technique was validated against completely independent gauge station data. The validation results show a promising performance of the new rainfall retrieval technique, especially when compared to the GPM IMERG IR-only rainfall product. The standard verification scored an average Heidke Skill Score of 0.4 for rain area delineation and an average R between 0.1 and 0.7 for rainfall rate assignment, indicating uncertainties for the Lut Desert area and regions with high altitude gradients." @default.
- W2978959791 created "2019-10-10" @default.
- W2978959791 creator A5004175874 @default.
- W2978959791 creator A5008911224 @default.
- W2978959791 creator A5080379268 @default.
- W2978959791 date "2019-10-03" @default.
- W2978959791 modified "2023-09-27" @default.
- W2978959791 title "Estimating High Spatio-Temporal Resolution Rainfall from MSG1 and GPM IMERG Based on Machine Learning: Case Study of Iran" @default.
- W2978959791 cites W1963726388 @default.
- W2978959791 cites W1965295327 @default.
- W2978959791 cites W1968962738 @default.
- W2978959791 cites W1981392743 @default.
- W2978959791 cites W1988195734 @default.
- W2978959791 cites W1988672557 @default.
- W2978959791 cites W1988685561 @default.
- W2978959791 cites W1995622703 @default.
- W2978959791 cites W2026913026 @default.
- W2978959791 cites W2027831657 @default.
- W2978959791 cites W2028767754 @default.
- W2978959791 cites W2048560111 @default.
- W2978959791 cites W2055308682 @default.
- W2978959791 cites W2069229431 @default.
- W2978959791 cites W2073298425 @default.
- W2978959791 cites W2078613192 @default.
- W2978959791 cites W2078652529 @default.
- W2978959791 cites W2079274560 @default.
- W2978959791 cites W2081232330 @default.
- W2978959791 cites W2082872569 @default.
- W2978959791 cites W2094653192 @default.
- W2978959791 cites W2101394945 @default.
- W2978959791 cites W2104325518 @default.
- W2978959791 cites W2112362638 @default.
- W2978959791 cites W2119803205 @default.
- W2978959791 cites W2129347636 @default.
- W2978959791 cites W2142854301 @default.
- W2978959791 cites W2146939523 @default.
- W2978959791 cites W2152012447 @default.
- W2978959791 cites W2158830316 @default.
- W2978959791 cites W2165383499 @default.
- W2978959791 cites W2169309160 @default.
- W2978959791 cites W2177044256 @default.
- W2978959791 cites W2187558081 @default.
- W2978959791 cites W2269631561 @default.
- W2978959791 cites W2501652791 @default.
- W2978959791 cites W2531885484 @default.
- W2978959791 cites W2586334508 @default.
- W2978959791 cites W2592398755 @default.
- W2978959791 cites W2611009739 @default.
- W2978959791 cites W2619212477 @default.
- W2978959791 cites W2742392262 @default.
- W2978959791 cites W2793714880 @default.
- W2978959791 cites W2793745286 @default.
- W2978959791 cites W2802987163 @default.
- W2978959791 cites W2900303043 @default.
- W2978959791 cites W2911964244 @default.
- W2978959791 cites W2936104660 @default.
- W2978959791 cites W3215186461 @default.
- W2978959791 doi "https://doi.org/10.3390/rs11192307" @default.
- W2978959791 hasPublicationYear "2019" @default.
- W2978959791 type Work @default.
- W2978959791 sameAs 2978959791 @default.
- W2978959791 citedByCount "10" @default.
- W2978959791 countsByYear W29789597912019 @default.
- W2978959791 countsByYear W29789597912021 @default.
- W2978959791 countsByYear W29789597912022 @default.
- W2978959791 countsByYear W29789597912023 @default.
- W2978959791 crossrefType "journal-article" @default.
- W2978959791 hasAuthorship W2978959791A5004175874 @default.
- W2978959791 hasAuthorship W2978959791A5008911224 @default.
- W2978959791 hasAuthorship W2978959791A5080379268 @default.
- W2978959791 hasBestOaLocation W29789597911 @default.
- W2978959791 hasConcept C107054158 @default.
- W2978959791 hasConcept C127313418 @default.
- W2978959791 hasConcept C127413603 @default.
- W2978959791 hasConcept C146978453 @default.
- W2978959791 hasConcept C153294291 @default.
- W2978959791 hasConcept C19269812 @default.
- W2978959791 hasConcept C205649164 @default.
- W2978959791 hasConcept C29278236 @default.
- W2978959791 hasConcept C39432304 @default.
- W2978959791 hasConcept C62649853 @default.
- W2978959791 hasConceptScore W2978959791C107054158 @default.
- W2978959791 hasConceptScore W2978959791C127313418 @default.
- W2978959791 hasConceptScore W2978959791C127413603 @default.
- W2978959791 hasConceptScore W2978959791C146978453 @default.
- W2978959791 hasConceptScore W2978959791C153294291 @default.
- W2978959791 hasConceptScore W2978959791C19269812 @default.
- W2978959791 hasConceptScore W2978959791C205649164 @default.
- W2978959791 hasConceptScore W2978959791C29278236 @default.
- W2978959791 hasConceptScore W2978959791C39432304 @default.
- W2978959791 hasConceptScore W2978959791C62649853 @default.
- W2978959791 hasIssue "19" @default.
- W2978959791 hasLocation W29789597911 @default.
- W2978959791 hasOpenAccess W2978959791 @default.
- W2978959791 hasPrimaryLocation W29789597911 @default.
- W2978959791 hasRelatedWork W2899851166 @default.
- W2978959791 hasRelatedWork W2901544382 @default.
- W2978959791 hasRelatedWork W3136146687 @default.