Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978973406> ?p ?o ?g. }
- W2978973406 endingPage "1904" @default.
- W2978973406 startingPage "1895" @default.
- W2978973406 abstract "The development of smart grid and new advanced metering infrastructures induces new opportunities and challenges for utilities. Exploiting smart meters information for forecasting stands as a key point for energy providers who have to deal with time varying portfolio of customers as well as grid managers who needs to improve accuracy of local forecasts to face with distributed renewable energy generation development. We propose a new machine learning approach to forecast the system load of a group of customers exploiting individual load measurements in real time and/or exogenous information like weather and survey data. Our approach consists in building experts using random forests trained on some subsets of customers then normalise their predictions and aggregate them with a convex expert aggregation algorithm to forecast the system load. We propose new aggregation methods and compare two strategies for building subsets of customers: 1) hierarchical clustering based on survey data and/or load features and 2) random clustering strategy. These approaches are evaluated on a real data set of residential Irish customers load at a half hourly resolution. We show that our approaches achieve a significant gain in short term load forecasting accuracy of around 25 percent of RMSE." @default.
- W2978973406 created "2019-10-10" @default.
- W2978973406 creator A5010900472 @default.
- W2978973406 creator A5037457090 @default.
- W2978973406 creator A5075118391 @default.
- W2978973406 creator A5091187068 @default.
- W2978973406 date "2020-05-01" @default.
- W2978973406 modified "2023-10-17" @default.
- W2978973406 title "Aggregation of Multi-Scale Experts for Bottom-Up Load Forecasting" @default.
- W2978973406 cites W1170559991 @default.
- W2978973406 cites W1514611985 @default.
- W2978973406 cites W1516361161 @default.
- W2978973406 cites W1570963478 @default.
- W2978973406 cites W1678356000 @default.
- W2978973406 cites W1808384435 @default.
- W2978973406 cites W2032161710 @default.
- W2978973406 cites W2056884786 @default.
- W2978973406 cites W2066296745 @default.
- W2978973406 cites W2128403045 @default.
- W2978973406 cites W2135046866 @default.
- W2978973406 cites W2140494000 @default.
- W2978973406 cites W2166163519 @default.
- W2978973406 cites W2209508536 @default.
- W2978973406 cites W2286305802 @default.
- W2978973406 cites W2509045969 @default.
- W2978973406 cites W2781956327 @default.
- W2978973406 cites W2786918196 @default.
- W2978973406 cites W2790566149 @default.
- W2978973406 cites W2795311922 @default.
- W2978973406 cites W2799436787 @default.
- W2978973406 cites W2801424816 @default.
- W2978973406 cites W2883628237 @default.
- W2978973406 cites W2902285311 @default.
- W2978973406 cites W2911964244 @default.
- W2978973406 cites W2977385536 @default.
- W2978973406 cites W3102476541 @default.
- W2978973406 cites W3112717819 @default.
- W2978973406 cites W3125709972 @default.
- W2978973406 cites W4212883601 @default.
- W2978973406 cites W4297944103 @default.
- W2978973406 doi "https://doi.org/10.1109/tsg.2019.2945088" @default.
- W2978973406 hasPublicationYear "2020" @default.
- W2978973406 type Work @default.
- W2978973406 sameAs 2978973406 @default.
- W2978973406 citedByCount "31" @default.
- W2978973406 countsByYear W29789734062020 @default.
- W2978973406 countsByYear W29789734062021 @default.
- W2978973406 countsByYear W29789734062022 @default.
- W2978973406 countsByYear W29789734062023 @default.
- W2978973406 crossrefType "journal-article" @default.
- W2978973406 hasAuthorship W2978973406A5010900472 @default.
- W2978973406 hasAuthorship W2978973406A5037457090 @default.
- W2978973406 hasAuthorship W2978973406A5075118391 @default.
- W2978973406 hasAuthorship W2978973406A5091187068 @default.
- W2978973406 hasConcept C10558101 @default.
- W2978973406 hasConcept C106159729 @default.
- W2978973406 hasConcept C119599485 @default.
- W2978973406 hasConcept C119857082 @default.
- W2978973406 hasConcept C124101348 @default.
- W2978973406 hasConcept C127413603 @default.
- W2978973406 hasConcept C159985019 @default.
- W2978973406 hasConcept C162324750 @default.
- W2978973406 hasConcept C169258074 @default.
- W2978973406 hasConcept C192562407 @default.
- W2978973406 hasConcept C206658404 @default.
- W2978973406 hasConcept C24590314 @default.
- W2978973406 hasConcept C2777908891 @default.
- W2978973406 hasConcept C2779438525 @default.
- W2978973406 hasConcept C2779510800 @default.
- W2978973406 hasConcept C2780821815 @default.
- W2978973406 hasConcept C30905978 @default.
- W2978973406 hasConcept C31258907 @default.
- W2978973406 hasConcept C41008148 @default.
- W2978973406 hasConcept C4679612 @default.
- W2978973406 hasConcept C73555534 @default.
- W2978973406 hasConcept C78519656 @default.
- W2978973406 hasConcept C82578977 @default.
- W2978973406 hasConceptScore W2978973406C10558101 @default.
- W2978973406 hasConceptScore W2978973406C106159729 @default.
- W2978973406 hasConceptScore W2978973406C119599485 @default.
- W2978973406 hasConceptScore W2978973406C119857082 @default.
- W2978973406 hasConceptScore W2978973406C124101348 @default.
- W2978973406 hasConceptScore W2978973406C127413603 @default.
- W2978973406 hasConceptScore W2978973406C159985019 @default.
- W2978973406 hasConceptScore W2978973406C162324750 @default.
- W2978973406 hasConceptScore W2978973406C169258074 @default.
- W2978973406 hasConceptScore W2978973406C192562407 @default.
- W2978973406 hasConceptScore W2978973406C206658404 @default.
- W2978973406 hasConceptScore W2978973406C24590314 @default.
- W2978973406 hasConceptScore W2978973406C2777908891 @default.
- W2978973406 hasConceptScore W2978973406C2779438525 @default.
- W2978973406 hasConceptScore W2978973406C2779510800 @default.
- W2978973406 hasConceptScore W2978973406C2780821815 @default.
- W2978973406 hasConceptScore W2978973406C30905978 @default.
- W2978973406 hasConceptScore W2978973406C31258907 @default.
- W2978973406 hasConceptScore W2978973406C41008148 @default.
- W2978973406 hasConceptScore W2978973406C4679612 @default.
- W2978973406 hasConceptScore W2978973406C73555534 @default.