Matches in SemOpenAlex for { <https://semopenalex.org/work/W2978984895> ?p ?o ?g. }
- W2978984895 endingPage "1" @default.
- W2978984895 startingPage "1" @default.
- W2978984895 abstract "We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks). In addition, we included vascular lumen morphology and three-dimensional (3-D) digital edge and texture features. Classification methods were developed using expansive datasets (∼7000 images), consisting of both clinical in-vivo images and an ex-vivo dataset, which was validated using 3-D cryo-imaging/histology. Conditional random field was used to perform 3-D classification noise cleaning of classification results. We tested various multiclass approaches, classifiers, and feature selection schemes and found that a three-class support vector machine with minimal-redundancy-maximal-relevance feature selection gave the best performance. We found that inclusion of our morphological and 3-D features improved overall classification accuracy. On a held-out test set consisting of >1700 images, we obtained an overall accuracy of 81.58%, with the following (sensitivity/specificity) for each class: other (81.43/89.59), fibrolipidic (94.48/87.32), and fibrocalcific (74.82/95.28). The en-face views of classification results showed that automated classification easily captured the preponderance of a disease segment (e.g., a calcified segment had large regions of fibrocalcific classifications). Finally, we demonstrated proof-of-concept for streamlining A-line classification output with existing fibrolipidic and fibrocalcific boundary segmentation methods, to enable fully automated plaque quantification. The results suggest that our classification approach is a viable step toward fully automated IVOCT plaque classification and segmentation for live-time treatment planning and for offline assessment of drug and biologic therapeutics." @default.
- W2978984895 created "2019-10-10" @default.
- W2978984895 creator A5007882747 @default.
- W2978984895 creator A5015877629 @default.
- W2978984895 creator A5021196481 @default.
- W2978984895 creator A5038142458 @default.
- W2978984895 creator A5038376009 @default.
- W2978984895 creator A5059314323 @default.
- W2978984895 creator A5088723329 @default.
- W2978984895 date "2019-10-04" @default.
- W2978984895 modified "2023-10-15" @default.
- W2978984895 title "Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets" @default.
- W2978984895 cites W114687431 @default.
- W2978984895 cites W1408981388 @default.
- W2978984895 cites W1956305767 @default.
- W2978984895 cites W1965043099 @default.
- W2978984895 cites W2010913892 @default.
- W2978984895 cites W2019029236 @default.
- W2978984895 cites W2030553685 @default.
- W2978984895 cites W2032966177 @default.
- W2978984895 cites W2054377604 @default.
- W2978984895 cites W2054544120 @default.
- W2978984895 cites W2081357658 @default.
- W2978984895 cites W2083767630 @default.
- W2978984895 cites W2084621368 @default.
- W2978984895 cites W2108071067 @default.
- W2978984895 cites W2108345603 @default.
- W2978984895 cites W2115357996 @default.
- W2978984895 cites W2117398327 @default.
- W2978984895 cites W2123523732 @default.
- W2978984895 cites W2134254671 @default.
- W2978984895 cites W2136746813 @default.
- W2978984895 cites W2147801509 @default.
- W2978984895 cites W2154053567 @default.
- W2978984895 cites W2156030624 @default.
- W2978984895 cites W2157080081 @default.
- W2978984895 cites W2161682643 @default.
- W2978984895 cites W2167149374 @default.
- W2978984895 cites W2167521613 @default.
- W2978984895 cites W2335455113 @default.
- W2978984895 cites W2412291070 @default.
- W2978984895 cites W2463857469 @default.
- W2978984895 cites W2518699512 @default.
- W2978984895 cites W2581493794 @default.
- W2978984895 cites W2652199733 @default.
- W2978984895 cites W2754597808 @default.
- W2978984895 cites W2783052356 @default.
- W2978984895 cites W2795741256 @default.
- W2978984895 cites W2890643549 @default.
- W2978984895 cites W2902947916 @default.
- W2978984895 cites W3104734507 @default.
- W2978984895 cites W34521524 @default.
- W2978984895 doi "https://doi.org/10.1117/1.jbo.24.10.106002" @default.
- W2978984895 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6784787" @default.
- W2978984895 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31586357" @default.
- W2978984895 hasPublicationYear "2019" @default.
- W2978984895 type Work @default.
- W2978984895 sameAs 2978984895 @default.
- W2978984895 citedByCount "24" @default.
- W2978984895 countsByYear W29789848952019 @default.
- W2978984895 countsByYear W29789848952020 @default.
- W2978984895 countsByYear W29789848952021 @default.
- W2978984895 countsByYear W29789848952022 @default.
- W2978984895 countsByYear W29789848952023 @default.
- W2978984895 crossrefType "journal-article" @default.
- W2978984895 hasAuthorship W2978984895A5007882747 @default.
- W2978984895 hasAuthorship W2978984895A5015877629 @default.
- W2978984895 hasAuthorship W2978984895A5021196481 @default.
- W2978984895 hasAuthorship W2978984895A5038142458 @default.
- W2978984895 hasAuthorship W2978984895A5038376009 @default.
- W2978984895 hasAuthorship W2978984895A5059314323 @default.
- W2978984895 hasAuthorship W2978984895A5088723329 @default.
- W2978984895 hasBestOaLocation W29789848951 @default.
- W2978984895 hasConcept C115961682 @default.
- W2978984895 hasConcept C12267149 @default.
- W2978984895 hasConcept C126838900 @default.
- W2978984895 hasConcept C148483581 @default.
- W2978984895 hasConcept C153180895 @default.
- W2978984895 hasConcept C154945302 @default.
- W2978984895 hasConcept C2778818243 @default.
- W2978984895 hasConcept C31972630 @default.
- W2978984895 hasConcept C41008148 @default.
- W2978984895 hasConcept C71924100 @default.
- W2978984895 hasConcept C75294576 @default.
- W2978984895 hasConcept C89600930 @default.
- W2978984895 hasConceptScore W2978984895C115961682 @default.
- W2978984895 hasConceptScore W2978984895C12267149 @default.
- W2978984895 hasConceptScore W2978984895C126838900 @default.
- W2978984895 hasConceptScore W2978984895C148483581 @default.
- W2978984895 hasConceptScore W2978984895C153180895 @default.
- W2978984895 hasConceptScore W2978984895C154945302 @default.
- W2978984895 hasConceptScore W2978984895C2778818243 @default.
- W2978984895 hasConceptScore W2978984895C31972630 @default.
- W2978984895 hasConceptScore W2978984895C41008148 @default.
- W2978984895 hasConceptScore W2978984895C71924100 @default.
- W2978984895 hasConceptScore W2978984895C75294576 @default.
- W2978984895 hasConceptScore W2978984895C89600930 @default.
- W2978984895 hasFunder F4320332161 @default.