Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979074722> ?p ?o ?g. }
- W2979074722 abstract "Speech sounds are produced as the coordinated movement of the speaking organs. There are several available methods to model the relation of articulatory movements and the resulting speech signal. The reverse problem is often called as acoustic-to-articulatory inversion (AAI). In this paper we have implemented several different Deep Neural Networks (DNNs) to estimate the articulatory information from the acoustic signal. There are several previous works related to performing this task, but most of them are using ElectroMagnetic Articulography (EMA) for tracking the articulatory movement. Compared to EMA, Ultrasound Tongue Imaging (UTI) is a technique of higher cost-benefit if we take into account equipment cost, portability, safety and visualized structures. Seeing that, our goal is to train a DNN to obtain UT images, when using speech as input. We also test two approaches to represent the articulatory information: 1) the EigenTongue space and 2) the raw ultrasound image. As an objective quality measure for the reconstructed UT images, we use MSE, Structural Similarity Index (SSIM) and Complex- Wavelet SSIM (CW-SSIM). Our experimental results show that CW-SSIM is the most useful error measure in the UTI context. We tested three different system configurations: a) simple DNN composed of 2 hidden layers with 64x64 pixels of an UTI file as target; b) the same simple DNN but with ultrasound images projected to the EigenTongue space as the target; c) and a more complex DNN composed of 5 hidden layers with UTI files projected to the EigenTongue space. In a subjective experiment the subjects found that the neural networks with two hidden layers were more suitable for this inversion task." @default.
- W2979074722 created "2019-10-10" @default.
- W2979074722 creator A5016031960 @default.
- W2979074722 creator A5027804141 @default.
- W2979074722 creator A5029149936 @default.
- W2979074722 date "2019-07-01" @default.
- W2979074722 modified "2023-09-25" @default.
- W2979074722 title "DNN-based Acoustic-to-Articulatory Inversion using Ultrasound Tongue Imaging" @default.
- W2979074722 cites W1531956331 @default.
- W2979074722 cites W1663785051 @default.
- W2979074722 cites W1973016470 @default.
- W2979074722 cites W1982854652 @default.
- W2979074722 cites W1993882792 @default.
- W2979074722 cites W1995440941 @default.
- W2979074722 cites W1995735739 @default.
- W2979074722 cites W2008120082 @default.
- W2979074722 cites W2039640471 @default.
- W2979074722 cites W2043003570 @default.
- W2979074722 cites W2052382192 @default.
- W2979074722 cites W2069618035 @default.
- W2979074722 cites W2101802380 @default.
- W2979074722 cites W2109272898 @default.
- W2979074722 cites W2129160496 @default.
- W2979074722 cites W2133665775 @default.
- W2979074722 cites W2135707066 @default.
- W2979074722 cites W2143929858 @default.
- W2979074722 cites W2145442746 @default.
- W2979074722 cites W2150734399 @default.
- W2979074722 cites W2160815625 @default.
- W2979074722 cites W2191779130 @default.
- W2979074722 cites W2294901616 @default.
- W2979074722 cites W2340712740 @default.
- W2979074722 cites W2406959878 @default.
- W2979074722 cites W2419247625 @default.
- W2979074722 cites W2508425411 @default.
- W2979074722 cites W2515755543 @default.
- W2979074722 cites W2554625447 @default.
- W2979074722 cites W2603597171 @default.
- W2979074722 cites W2623570296 @default.
- W2979074722 cites W2746109435 @default.
- W2979074722 cites W2769402512 @default.
- W2979074722 cites W2769531941 @default.
- W2979074722 cites W2770785043 @default.
- W2979074722 cites W2888898948 @default.
- W2979074722 cites W2889413431 @default.
- W2979074722 cites W2889853672 @default.
- W2979074722 cites W2990782011 @default.
- W2979074722 cites W3098900881 @default.
- W2979074722 cites W435022884 @default.
- W2979074722 doi "https://doi.org/10.1109/ijcnn.2019.8851769" @default.
- W2979074722 hasPublicationYear "2019" @default.
- W2979074722 type Work @default.
- W2979074722 sameAs 2979074722 @default.
- W2979074722 citedByCount "12" @default.
- W2979074722 countsByYear W29790747222019 @default.
- W2979074722 countsByYear W29790747222020 @default.
- W2979074722 countsByYear W29790747222021 @default.
- W2979074722 countsByYear W29790747222022 @default.
- W2979074722 crossrefType "proceedings-article" @default.
- W2979074722 hasAuthorship W2979074722A5016031960 @default.
- W2979074722 hasAuthorship W2979074722A5027804141 @default.
- W2979074722 hasAuthorship W2979074722A5029149936 @default.
- W2979074722 hasBestOaLocation W29790747222 @default.
- W2979074722 hasConcept C109007969 @default.
- W2979074722 hasConcept C121332964 @default.
- W2979074722 hasConcept C127313418 @default.
- W2979074722 hasConcept C142724271 @default.
- W2979074722 hasConcept C143753070 @default.
- W2979074722 hasConcept C151730666 @default.
- W2979074722 hasConcept C154945302 @default.
- W2979074722 hasConcept C1893757 @default.
- W2979074722 hasConcept C24890656 @default.
- W2979074722 hasConcept C2779744641 @default.
- W2979074722 hasConcept C28490314 @default.
- W2979074722 hasConcept C2986892559 @default.
- W2979074722 hasConcept C2989478337 @default.
- W2979074722 hasConcept C34951282 @default.
- W2979074722 hasConcept C41008148 @default.
- W2979074722 hasConcept C71924100 @default.
- W2979074722 hasConcept C76155785 @default.
- W2979074722 hasConcept C97337990 @default.
- W2979074722 hasConceptScore W2979074722C109007969 @default.
- W2979074722 hasConceptScore W2979074722C121332964 @default.
- W2979074722 hasConceptScore W2979074722C127313418 @default.
- W2979074722 hasConceptScore W2979074722C142724271 @default.
- W2979074722 hasConceptScore W2979074722C143753070 @default.
- W2979074722 hasConceptScore W2979074722C151730666 @default.
- W2979074722 hasConceptScore W2979074722C154945302 @default.
- W2979074722 hasConceptScore W2979074722C1893757 @default.
- W2979074722 hasConceptScore W2979074722C24890656 @default.
- W2979074722 hasConceptScore W2979074722C2779744641 @default.
- W2979074722 hasConceptScore W2979074722C28490314 @default.
- W2979074722 hasConceptScore W2979074722C2986892559 @default.
- W2979074722 hasConceptScore W2979074722C2989478337 @default.
- W2979074722 hasConceptScore W2979074722C34951282 @default.
- W2979074722 hasConceptScore W2979074722C41008148 @default.
- W2979074722 hasConceptScore W2979074722C71924100 @default.
- W2979074722 hasConceptScore W2979074722C76155785 @default.
- W2979074722 hasConceptScore W2979074722C97337990 @default.
- W2979074722 hasLocation W29790747221 @default.