Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979147512> ?p ?o ?g. }
- W2979147512 abstract "This thesis is built on the idea of modeling episodes of multiple time series which can be briefly defined as multivariate time series whose individual dimensions vary in time and nature. This kind of data arises naturally when we observe repeatedly scenarios where collections of individual elements that may or may not take part in the collective observed behaviour. We illustrate the ideas constructed around this kind of data making use of datasets related to crowdfunding and video-on-demand. These datasets are prolonged periods of observation of these scenarios and provide natural examples to the ideas we develop. How to relate seemingly disconnected individual episodes and how to incorporate information from them into the general view of the multiple episodes is the main goal of this thesis. We focus on constructing this two-way flux so that even more complex models than the ones present in this work can be constructed using the proposed features. We describe models and algorithms that mix supervised and unsupervised tasks. Specifically, we construct models that connect Topic Models, unsupervised learning models that aim to summarize big corpora of texts with regression models on time series. We also discuss how summaries of past episodes may be helpfull in predicting future series of observations of same category" @default.
- W2979147512 created "2019-10-10" @default.
- W2979147512 creator A5024632348 @default.
- W2979147512 date "2019-04-28" @default.
- W2979147512 modified "2023-09-26" @default.
- W2979147512 title "Models and Algorithms for Episodic Time-Series" @default.
- W2979147512 cites W114560312 @default.
- W2979147512 cites W1511986666 @default.
- W2979147512 cites W1516111018 @default.
- W2979147512 cites W1570770495 @default.
- W2979147512 cites W1746680969 @default.
- W2979147512 cites W1880262756 @default.
- W2979147512 cites W1959608418 @default.
- W2979147512 cites W1973193168 @default.
- W2979147512 cites W1985194760 @default.
- W2979147512 cites W1996871891 @default.
- W2979147512 cites W2031998113 @default.
- W2979147512 cites W2041701373 @default.
- W2979147512 cites W2041923730 @default.
- W2979147512 cites W2072644219 @default.
- W2979147512 cites W2086569348 @default.
- W2979147512 cites W2097726431 @default.
- W2979147512 cites W2098062695 @default.
- W2979147512 cites W2098620445 @default.
- W2979147512 cites W2099813784 @default.
- W2979147512 cites W2104210067 @default.
- W2979147512 cites W2112050062 @default.
- W2979147512 cites W2120926292 @default.
- W2979147512 cites W2125588186 @default.
- W2979147512 cites W2127278328 @default.
- W2979147512 cites W2128914432 @default.
- W2979147512 cites W2141250202 @default.
- W2979147512 cites W2151383095 @default.
- W2979147512 cites W2164110874 @default.
- W2979147512 cites W2171717581 @default.
- W2979147512 cites W2182090782 @default.
- W2979147512 cites W2183356160 @default.
- W2979147512 cites W2187741934 @default.
- W2979147512 cites W2462290672 @default.
- W2979147512 cites W2474440862 @default.
- W2979147512 cites W2523246573 @default.
- W2979147512 cites W2616188127 @default.
- W2979147512 cites W2737428849 @default.
- W2979147512 cites W2919115771 @default.
- W2979147512 cites W2953204008 @default.
- W2979147512 cites W2953669813 @default.
- W2979147512 cites W2963173382 @default.
- W2979147512 cites W2963625764 @default.
- W2979147512 cites W2964019424 @default.
- W2979147512 cites W311245883 @default.
- W2979147512 cites W3121716941 @default.
- W2979147512 cites W359818833 @default.
- W2979147512 cites W75368837 @default.
- W2979147512 hasPublicationYear "2019" @default.
- W2979147512 type Work @default.
- W2979147512 sameAs 2979147512 @default.
- W2979147512 citedByCount "0" @default.
- W2979147512 crossrefType "dissertation" @default.
- W2979147512 hasAuthorship W2979147512A5024632348 @default.
- W2979147512 hasConcept C119857082 @default.
- W2979147512 hasConcept C120665830 @default.
- W2979147512 hasConcept C121332964 @default.
- W2979147512 hasConcept C143724316 @default.
- W2979147512 hasConcept C151406439 @default.
- W2979147512 hasConcept C151730666 @default.
- W2979147512 hasConcept C154945302 @default.
- W2979147512 hasConcept C161584116 @default.
- W2979147512 hasConcept C192209626 @default.
- W2979147512 hasConcept C199360897 @default.
- W2979147512 hasConcept C2522767166 @default.
- W2979147512 hasConcept C2780801425 @default.
- W2979147512 hasConcept C41008148 @default.
- W2979147512 hasConcept C86803240 @default.
- W2979147512 hasConceptScore W2979147512C119857082 @default.
- W2979147512 hasConceptScore W2979147512C120665830 @default.
- W2979147512 hasConceptScore W2979147512C121332964 @default.
- W2979147512 hasConceptScore W2979147512C143724316 @default.
- W2979147512 hasConceptScore W2979147512C151406439 @default.
- W2979147512 hasConceptScore W2979147512C151730666 @default.
- W2979147512 hasConceptScore W2979147512C154945302 @default.
- W2979147512 hasConceptScore W2979147512C161584116 @default.
- W2979147512 hasConceptScore W2979147512C192209626 @default.
- W2979147512 hasConceptScore W2979147512C199360897 @default.
- W2979147512 hasConceptScore W2979147512C2522767166 @default.
- W2979147512 hasConceptScore W2979147512C2780801425 @default.
- W2979147512 hasConceptScore W2979147512C41008148 @default.
- W2979147512 hasConceptScore W2979147512C86803240 @default.
- W2979147512 hasLocation W29791475121 @default.
- W2979147512 hasOpenAccess W2979147512 @default.
- W2979147512 hasPrimaryLocation W29791475121 @default.
- W2979147512 hasRelatedWork W1978156564 @default.
- W2979147512 hasRelatedWork W2005521596 @default.
- W2979147512 hasRelatedWork W2019334318 @default.
- W2979147512 hasRelatedWork W2057377241 @default.
- W2979147512 hasRelatedWork W2120565280 @default.
- W2979147512 hasRelatedWork W2132416294 @default.
- W2979147512 hasRelatedWork W2184683771 @default.
- W2979147512 hasRelatedWork W2252076739 @default.
- W2979147512 hasRelatedWork W2279018116 @default.
- W2979147512 hasRelatedWork W2281393958 @default.