Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979163681> ?p ?o ?g. }
- W2979163681 abstract "Because of high dimensionality, correlation among covariates, and noise contained in data, dimension reduction (DR) techniques are often employed to the application of machine learning algorithms. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and their kernel variants (KPCA, KLDA) are among the most popular DR methods. Recently, Supervised Kernel Principal Component Analysis (SKPCA) has been shown as another successful alternative. In this paper, brief reviews of these popular techniques are presented first. We then conduct a comparative performance study based on three simulated datasets, after which the performance of the techniques are evaluated through application to a pattern recognition problem in face image analysis. The gender classification problem is considered on MORPH-II and FG-NET, two popular longitudinal face aging databases. Several feature extraction methods are used, including biologically-inspired features (BIF), local binary patterns (LBP), histogram of oriented gradients (HOG), and the Active Appearance Model (AAM). After applications of DR methods, a linear support vector machine (SVM) is deployed with gender classification accuracy rates exceeding 95% on MORPH-II, competitive with benchmark results. A parallel computational approach is also proposed, attaining faster processing speeds and similar recognition rates on MORPH-II. Our computational approach can be applied to practical gender classification systems and generalized to other face analysis tasks, such as race classification and age prediction." @default.
- W2979163681 created "2019-10-10" @default.
- W2979163681 creator A5014052149 @default.
- W2979163681 creator A5018688733 @default.
- W2979163681 creator A5026713161 @default.
- W2979163681 creator A5027329732 @default.
- W2979163681 date "2019-10-04" @default.
- W2979163681 modified "2023-09-27" @default.
- W2979163681 title "A Comparison Study on Nonlinear Dimension Reduction Methods with Kernel Variations: Visualization, Optimization and Classification" @default.
- W2979163681 cites W1167806532 @default.
- W2979163681 cites W1514415280 @default.
- W2979163681 cites W1540155273 @default.
- W2979163681 cites W1545425562 @default.
- W2979163681 cites W1571401318 @default.
- W2979163681 cites W1587559447 @default.
- W2979163681 cites W1615258228 @default.
- W2979163681 cites W1618905105 @default.
- W2979163681 cites W1638081485 @default.
- W2979163681 cites W1698155719 @default.
- W2979163681 cites W1742512077 @default.
- W2979163681 cites W1769974409 @default.
- W2979163681 cites W1821811819 @default.
- W2979163681 cites W1919814523 @default.
- W2979163681 cites W1941659294 @default.
- W2979163681 cites W1946550961 @default.
- W2979163681 cites W1964749215 @default.
- W2979163681 cites W1977050089 @default.
- W2979163681 cites W1978675111 @default.
- W2979163681 cites W1984849553 @default.
- W2979163681 cites W2001003881 @default.
- W2979163681 cites W2001619934 @default.
- W2979163681 cites W2030818161 @default.
- W2979163681 cites W2033381780 @default.
- W2979163681 cites W2040375865 @default.
- W2979163681 cites W2041657594 @default.
- W2979163681 cites W2044730627 @default.
- W2979163681 cites W2069508203 @default.
- W2979163681 cites W2071128523 @default.
- W2979163681 cites W2090341258 @default.
- W2979163681 cites W2094248163 @default.
- W2979163681 cites W2094977433 @default.
- W2979163681 cites W2095193916 @default.
- W2979163681 cites W2096336206 @default.
- W2979163681 cites W2098072631 @default.
- W2979163681 cites W2098790407 @default.
- W2979163681 cites W2100495367 @default.
- W2979163681 cites W2102544846 @default.
- W2979163681 cites W2104320981 @default.
- W2979163681 cites W2108496475 @default.
- W2979163681 cites W2111146558 @default.
- W2979163681 cites W2115394472 @default.
- W2979163681 cites W2118664399 @default.
- W2979163681 cites W2121647436 @default.
- W2979163681 cites W2121649666 @default.
- W2979163681 cites W2121654450 @default.
- W2979163681 cites W2123687672 @default.
- W2979163681 cites W2134262590 @default.
- W2979163681 cites W2137802466 @default.
- W2979163681 cites W2138451337 @default.
- W2979163681 cites W2140095548 @default.
- W2979163681 cites W2141381813 @default.
- W2979163681 cites W2143304877 @default.
- W2979163681 cites W2146766088 @default.
- W2979163681 cites W2149494055 @default.
- W2979163681 cites W2172803778 @default.
- W2979163681 cites W2179234838 @default.
- W2979163681 cites W2274745179 @default.
- W2979163681 cites W2279713460 @default.
- W2979163681 cites W2294798173 @default.
- W2979163681 cites W2295055508 @default.
- W2979163681 cites W2511353375 @default.
- W2979163681 cites W2588729078 @default.
- W2979163681 cites W2731793484 @default.
- W2979163681 cites W2750378047 @default.
- W2979163681 cites W2900514833 @default.
- W2979163681 cites W434012021 @default.
- W2979163681 cites W2273771970 @default.
- W2979163681 hasPublicationYear "2019" @default.
- W2979163681 type Work @default.
- W2979163681 sameAs 2979163681 @default.
- W2979163681 citedByCount "0" @default.
- W2979163681 crossrefType "posted-content" @default.
- W2979163681 hasAuthorship W2979163681A5014052149 @default.
- W2979163681 hasAuthorship W2979163681A5018688733 @default.
- W2979163681 hasAuthorship W2979163681A5026713161 @default.
- W2979163681 hasAuthorship W2979163681A5027329732 @default.
- W2979163681 hasConcept C114614502 @default.
- W2979163681 hasConcept C115961682 @default.
- W2979163681 hasConcept C119857082 @default.
- W2979163681 hasConcept C122280245 @default.
- W2979163681 hasConcept C12267149 @default.
- W2979163681 hasConcept C13280743 @default.
- W2979163681 hasConcept C153180895 @default.
- W2979163681 hasConcept C154945302 @default.
- W2979163681 hasConcept C182335926 @default.
- W2979163681 hasConcept C185798385 @default.
- W2979163681 hasConcept C202444582 @default.
- W2979163681 hasConcept C205649164 @default.
- W2979163681 hasConcept C27438332 @default.
- W2979163681 hasConcept C33676613 @default.