Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979173662> ?p ?o ?g. }
- W2979173662 abstract "The curse of dimensionality causes well-known and widely discussed problems for machine learning methods. There is a hypothesis that usage of Manhattan distance and even fractional quasinorms lp (for p less than 1) can help to overcome the curse of dimensionality in classification problems. In this study, we systematically test this hypothesis for 37 binary classification problems on 25 databases. We confirm that fractional quasinorms have greater relative contrast or coefficient of variation than Euclidean norm l2, but we demonstrate also that the distance concentration shows qualitatively the same behaviour for all tested norms and quasinorms and the difference between them decays while dimension tends to infinity. Estimation of classification quality for kNN based on different norms and quasinorms shows that the greater relative contrast does not mean the better classifier performance and the worst performance for different databases was shown by the different norms (quasinorms). A systematic comparison shows that the difference in performance of kNN based on lp for p=2, 1, and 0.5 is statistically insignificant." @default.
- W2979173662 created "2019-10-10" @default.
- W2979173662 creator A5022426035 @default.
- W2979173662 creator A5035915062 @default.
- W2979173662 creator A5069472885 @default.
- W2979173662 date "2019-07-01" @default.
- W2979173662 modified "2023-09-26" @default.
- W2979173662 title "Do Fractional Norms and Quasinorms Help to Overcome the Curse of Dimensionality?" @default.
- W2979173662 cites W1672197616 @default.
- W2979173662 cites W1974758710 @default.
- W2979173662 cites W1987698418 @default.
- W2979173662 cites W2016944307 @default.
- W2979173662 cites W2061128187 @default.
- W2979173662 cites W2074166357 @default.
- W2979173662 cites W2078894942 @default.
- W2979173662 cites W2088422930 @default.
- W2979173662 cites W2104027187 @default.
- W2979173662 cites W2114588272 @default.
- W2979173662 cites W2131954086 @default.
- W2979173662 cites W2144407188 @default.
- W2979173662 cites W2146801187 @default.
- W2979173662 cites W2162006472 @default.
- W2979173662 cites W2165533158 @default.
- W2979173662 cites W2168532736 @default.
- W2979173662 cites W2170661374 @default.
- W2979173662 cites W2170702893 @default.
- W2979173662 cites W2298860367 @default.
- W2979173662 cites W231970315 @default.
- W2979173662 cites W2328142025 @default.
- W2979173662 cites W2344260814 @default.
- W2979173662 cites W2510620627 @default.
- W2979173662 cites W2527796832 @default.
- W2979173662 cites W2567830010 @default.
- W2979173662 cites W2579703217 @default.
- W2979173662 cites W2612932006 @default.
- W2979173662 cites W2884716758 @default.
- W2979173662 cites W2898060137 @default.
- W2979173662 cites W3099661174 @default.
- W2979173662 cites W4237171445 @default.
- W2979173662 cites W4252684946 @default.
- W2979173662 cites W4254420769 @default.
- W2979173662 cites W8060374 @default.
- W2979173662 doi "https://doi.org/10.1109/ijcnn.2019.8851899" @default.
- W2979173662 hasPublicationYear "2019" @default.
- W2979173662 type Work @default.
- W2979173662 sameAs 2979173662 @default.
- W2979173662 citedByCount "4" @default.
- W2979173662 countsByYear W29791736622020 @default.
- W2979173662 countsByYear W29791736622021 @default.
- W2979173662 countsByYear W29791736622023 @default.
- W2979173662 crossrefType "proceedings-article" @default.
- W2979173662 hasAuthorship W2979173662A5022426035 @default.
- W2979173662 hasAuthorship W2979173662A5035915062 @default.
- W2979173662 hasAuthorship W2979173662A5069472885 @default.
- W2979173662 hasConcept C105795698 @default.
- W2979173662 hasConcept C111030470 @default.
- W2979173662 hasConcept C114614502 @default.
- W2979173662 hasConcept C120174047 @default.
- W2979173662 hasConcept C129782007 @default.
- W2979173662 hasConcept C144024400 @default.
- W2979173662 hasConcept C153180895 @default.
- W2979173662 hasConcept C154945302 @default.
- W2979173662 hasConcept C17744445 @default.
- W2979173662 hasConcept C19165224 @default.
- W2979173662 hasConcept C191795146 @default.
- W2979173662 hasConcept C199539241 @default.
- W2979173662 hasConcept C2524010 @default.
- W2979173662 hasConcept C2776502983 @default.
- W2979173662 hasConcept C2780273121 @default.
- W2979173662 hasConcept C33676613 @default.
- W2979173662 hasConcept C33923547 @default.
- W2979173662 hasConcept C41008148 @default.
- W2979173662 hasConcept C95623464 @default.
- W2979173662 hasConceptScore W2979173662C105795698 @default.
- W2979173662 hasConceptScore W2979173662C111030470 @default.
- W2979173662 hasConceptScore W2979173662C114614502 @default.
- W2979173662 hasConceptScore W2979173662C120174047 @default.
- W2979173662 hasConceptScore W2979173662C129782007 @default.
- W2979173662 hasConceptScore W2979173662C144024400 @default.
- W2979173662 hasConceptScore W2979173662C153180895 @default.
- W2979173662 hasConceptScore W2979173662C154945302 @default.
- W2979173662 hasConceptScore W2979173662C17744445 @default.
- W2979173662 hasConceptScore W2979173662C19165224 @default.
- W2979173662 hasConceptScore W2979173662C191795146 @default.
- W2979173662 hasConceptScore W2979173662C199539241 @default.
- W2979173662 hasConceptScore W2979173662C2524010 @default.
- W2979173662 hasConceptScore W2979173662C2776502983 @default.
- W2979173662 hasConceptScore W2979173662C2780273121 @default.
- W2979173662 hasConceptScore W2979173662C33676613 @default.
- W2979173662 hasConceptScore W2979173662C33923547 @default.
- W2979173662 hasConceptScore W2979173662C41008148 @default.
- W2979173662 hasConceptScore W2979173662C95623464 @default.
- W2979173662 hasLocation W29791736621 @default.
- W2979173662 hasOpenAccess W2979173662 @default.
- W2979173662 hasPrimaryLocation W29791736621 @default.
- W2979173662 hasRelatedWork W195542429 @default.
- W2979173662 hasRelatedWork W2001652754 @default.
- W2979173662 hasRelatedWork W2149078746 @default.
- W2979173662 hasRelatedWork W2160451891 @default.
- W2979173662 hasRelatedWork W2368987896 @default.