Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979198248> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2979198248 abstract "The minimal complexity machine (MCM) minimizes the maximum distance between training data and the separating hyperplane and is shown to generalize better than the conventional support vector machine. In this paper, we analyze the MCM and clarify the conditions that the solution of MCM is nonunique and unbounded. To resolve the unboundedness, we propose the minimal complexity linear programming support vector machine (MLP SVM), in which the minimization of the maximum distance between training data and the separating hyperplane is added to the linear programming support vector machine (LP SVM). By computer experiments we show that the solution of the MCM is unbounded under some conditions and that the MLP SVM generalizes better than the LP SVM for most of the two-class and multiclass problems." @default.
- W2979198248 created "2019-10-10" @default.
- W2979198248 creator A5049225056 @default.
- W2979198248 date "2019-07-01" @default.
- W2979198248 modified "2023-10-14" @default.
- W2979198248 title "Analyzing Minimal Complexity Machines" @default.
- W2979198248 cites W1569369678 @default.
- W2979198248 cites W1657174467 @default.
- W2979198248 cites W1965788850 @default.
- W2979198248 cites W1971681701 @default.
- W2979198248 cites W2110294406 @default.
- W2979198248 cites W2116758157 @default.
- W2979198248 cites W2139212933 @default.
- W2979198248 cites W2149030223 @default.
- W2979198248 cites W2512631332 @default.
- W2979198248 cites W2753871781 @default.
- W2979198248 cites W2794421989 @default.
- W2979198248 cites W2962829974 @default.
- W2979198248 cites W4294576732 @default.
- W2979198248 cites W4301501800 @default.
- W2979198248 doi "https://doi.org/10.1109/ijcnn.2019.8852084" @default.
- W2979198248 hasPublicationYear "2019" @default.
- W2979198248 type Work @default.
- W2979198248 sameAs 2979198248 @default.
- W2979198248 citedByCount "5" @default.
- W2979198248 countsByYear W29791982482020 @default.
- W2979198248 countsByYear W29791982482021 @default.
- W2979198248 countsByYear W29791982482022 @default.
- W2979198248 crossrefType "proceedings-article" @default.
- W2979198248 hasAuthorship W2979198248A5049225056 @default.
- W2979198248 hasConcept C41008148 @default.
- W2979198248 hasConceptScore W2979198248C41008148 @default.
- W2979198248 hasLocation W29791982481 @default.
- W2979198248 hasOpenAccess W2979198248 @default.
- W2979198248 hasPrimaryLocation W29791982481 @default.
- W2979198248 hasRelatedWork W1596801655 @default.
- W2979198248 hasRelatedWork W2049775471 @default.
- W2979198248 hasRelatedWork W2350741829 @default.
- W2979198248 hasRelatedWork W2358668433 @default.
- W2979198248 hasRelatedWork W2376932109 @default.
- W2979198248 hasRelatedWork W2382290278 @default.
- W2979198248 hasRelatedWork W2390279801 @default.
- W2979198248 hasRelatedWork W2748952813 @default.
- W2979198248 hasRelatedWork W2899084033 @default.
- W2979198248 hasRelatedWork W2530322880 @default.
- W2979198248 isParatext "false" @default.
- W2979198248 isRetracted "false" @default.
- W2979198248 magId "2979198248" @default.
- W2979198248 workType "article" @default.