Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979201901> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2979201901 abstract "In this paper, a hardware design based on the field programmable gate array (FPGA) to implement a linear regression algorithm is presented. The arithmetic operations were optimized by applying a fixed-point number representation for all hardware based computations. A floating-point number training data point was initially created and stored in a personal computer (PC) which was then converted to fixed-point representation and transmitted to the FPGA via a serial communication link. With the proposed VHDL design description synthesized and implemented within the FPGA, the custom hardware architecture performs the linear regression algorithm based on matrix algebra considering a fixed size training data point set. To validate the hardware fixed-point arithmetic operations, the same algorithm was implemented in the Python language and the results of the two computation approaches were compared. The power consumption of the proposed embedded FPGA system was estimated to be 136.82 mW." @default.
- W2979201901 created "2019-10-10" @default.
- W2979201901 creator A5040091960 @default.
- W2979201901 creator A5045396471 @default.
- W2979201901 creator A5053889011 @default.
- W2979201901 date "2019-08-26" @default.
- W2979201901 modified "2023-10-10" @default.
- W2979201901 title "FPGA hardware linear regression implementation using fixed-point arithmetic" @default.
- W2979201901 cites W2119178646 @default.
- W2979201901 cites W2152297169 @default.
- W2979201901 cites W2625477351 @default.
- W2979201901 cites W2732291649 @default.
- W2979201901 cites W2754674485 @default.
- W2979201901 cites W2767103316 @default.
- W2979201901 cites W2767547957 @default.
- W2979201901 cites W2783444794 @default.
- W2979201901 cites W2810554592 @default.
- W2979201901 cites W2887032505 @default.
- W2979201901 cites W2914084159 @default.
- W2979201901 cites W2964248614 @default.
- W2979201901 doi "https://doi.org/10.1145/3338852.3339853" @default.
- W2979201901 hasPublicationYear "2019" @default.
- W2979201901 type Work @default.
- W2979201901 sameAs 2979201901 @default.
- W2979201901 citedByCount "6" @default.
- W2979201901 countsByYear W29792019012020 @default.
- W2979201901 countsByYear W29792019012022 @default.
- W2979201901 countsByYear W29792019012023 @default.
- W2979201901 crossrefType "proceedings-article" @default.
- W2979201901 hasAuthorship W2979201901A5040091960 @default.
- W2979201901 hasAuthorship W2979201901A5045396471 @default.
- W2979201901 hasAuthorship W2979201901A5053889011 @default.
- W2979201901 hasConcept C11413529 @default.
- W2979201901 hasConcept C134306372 @default.
- W2979201901 hasConcept C149635348 @default.
- W2979201901 hasConcept C163973906 @default.
- W2979201901 hasConcept C173608175 @default.
- W2979201901 hasConcept C199360897 @default.
- W2979201901 hasConcept C2777904410 @default.
- W2979201901 hasConcept C33923547 @default.
- W2979201901 hasConcept C36941000 @default.
- W2979201901 hasConcept C41008148 @default.
- W2979201901 hasConcept C42143788 @default.
- W2979201901 hasConcept C42935608 @default.
- W2979201901 hasConcept C45374587 @default.
- W2979201901 hasConcept C519991488 @default.
- W2979201901 hasConcept C61445026 @default.
- W2979201901 hasConcept C65232700 @default.
- W2979201901 hasConcept C84211073 @default.
- W2979201901 hasConcept C9390403 @default.
- W2979201901 hasConceptScore W2979201901C11413529 @default.
- W2979201901 hasConceptScore W2979201901C134306372 @default.
- W2979201901 hasConceptScore W2979201901C149635348 @default.
- W2979201901 hasConceptScore W2979201901C163973906 @default.
- W2979201901 hasConceptScore W2979201901C173608175 @default.
- W2979201901 hasConceptScore W2979201901C199360897 @default.
- W2979201901 hasConceptScore W2979201901C2777904410 @default.
- W2979201901 hasConceptScore W2979201901C33923547 @default.
- W2979201901 hasConceptScore W2979201901C36941000 @default.
- W2979201901 hasConceptScore W2979201901C41008148 @default.
- W2979201901 hasConceptScore W2979201901C42143788 @default.
- W2979201901 hasConceptScore W2979201901C42935608 @default.
- W2979201901 hasConceptScore W2979201901C45374587 @default.
- W2979201901 hasConceptScore W2979201901C519991488 @default.
- W2979201901 hasConceptScore W2979201901C61445026 @default.
- W2979201901 hasConceptScore W2979201901C65232700 @default.
- W2979201901 hasConceptScore W2979201901C84211073 @default.
- W2979201901 hasConceptScore W2979201901C9390403 @default.
- W2979201901 hasLocation W29792019011 @default.
- W2979201901 hasOpenAccess W2979201901 @default.
- W2979201901 hasPrimaryLocation W29792019011 @default.
- W2979201901 hasRelatedWork W2028730298 @default.
- W2979201901 hasRelatedWork W2068909549 @default.
- W2979201901 hasRelatedWork W2116187274 @default.
- W2979201901 hasRelatedWork W2351405704 @default.
- W2979201901 hasRelatedWork W2368451485 @default.
- W2979201901 hasRelatedWork W2390807153 @default.
- W2979201901 hasRelatedWork W2540226021 @default.
- W2979201901 hasRelatedWork W2979201901 @default.
- W2979201901 hasRelatedWork W3094426418 @default.
- W2979201901 hasRelatedWork W3215234104 @default.
- W2979201901 isParatext "false" @default.
- W2979201901 isRetracted "false" @default.
- W2979201901 magId "2979201901" @default.
- W2979201901 workType "article" @default.