Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979218902> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2979218902 abstract "Technological advancements in the last 10 years have made it possible to explore the application of data driven tools to the legal field. The problem, however, is that law is full of grey areas. Tax law in particular can be a very uncertain field, often precisely because of the many rules and standards that are supposed to provide lawyers and judges with guidance. Rules are a challenge because of their intricate specificity. Standards, on the other hand, are difficult because of their amorphousness. In terms of standards, tax lawyers must characterize relationships, instruments, and entities to help their clients comply with the law. Prediction regarding characterization is an essential legal skill: in order to advise on compliance or prepare for litigation, tax lawyers must be able to predict how the courts will characterize their client’s situation. However, legal predictions are limited by human judgment. Even the most careful lawyer’s predictions can be inaccurate in any number of ways: they may be based on overly broad rules of thumb, biased by individual experiences, or influenced by the interests of clients. But recent advances in machine learning provide lawyers with an opportunity to use these powerful new tools to support their predictions. By analyzing the facts and outcomes of past cases, machine learning algorithms can find hidden patterns in the existing data to predict the outcome of new scenarios." @default.
- W2979218902 created "2019-10-10" @default.
- W2979218902 creator A5043293895 @default.
- W2979218902 date "2018-09-19" @default.
- W2979218902 modified "2023-09-26" @default.
- W2979218902 title "Turning Standards into Rules Part 1: Using Machine Learning to Predict Tax Outcomes" @default.
- W2979218902 hasPublicationYear "2018" @default.
- W2979218902 type Work @default.
- W2979218902 sameAs 2979218902 @default.
- W2979218902 citedByCount "0" @default.
- W2979218902 crossrefType "posted-content" @default.
- W2979218902 hasAuthorship W2979218902A5043293895 @default.
- W2979218902 hasConcept C10138342 @default.
- W2979218902 hasConcept C11413529 @default.
- W2979218902 hasConcept C144133560 @default.
- W2979218902 hasConcept C144237770 @default.
- W2979218902 hasConcept C148220186 @default.
- W2979218902 hasConcept C154945302 @default.
- W2979218902 hasConcept C15744967 @default.
- W2979218902 hasConcept C162324750 @default.
- W2979218902 hasConcept C182306322 @default.
- W2979218902 hasConcept C202444582 @default.
- W2979218902 hasConcept C2781460075 @default.
- W2979218902 hasConcept C33923547 @default.
- W2979218902 hasConcept C41008148 @default.
- W2979218902 hasConcept C77805123 @default.
- W2979218902 hasConcept C89246107 @default.
- W2979218902 hasConcept C9652623 @default.
- W2979218902 hasConceptScore W2979218902C10138342 @default.
- W2979218902 hasConceptScore W2979218902C11413529 @default.
- W2979218902 hasConceptScore W2979218902C144133560 @default.
- W2979218902 hasConceptScore W2979218902C144237770 @default.
- W2979218902 hasConceptScore W2979218902C148220186 @default.
- W2979218902 hasConceptScore W2979218902C154945302 @default.
- W2979218902 hasConceptScore W2979218902C15744967 @default.
- W2979218902 hasConceptScore W2979218902C162324750 @default.
- W2979218902 hasConceptScore W2979218902C182306322 @default.
- W2979218902 hasConceptScore W2979218902C202444582 @default.
- W2979218902 hasConceptScore W2979218902C2781460075 @default.
- W2979218902 hasConceptScore W2979218902C33923547 @default.
- W2979218902 hasConceptScore W2979218902C41008148 @default.
- W2979218902 hasConceptScore W2979218902C77805123 @default.
- W2979218902 hasConceptScore W2979218902C89246107 @default.
- W2979218902 hasConceptScore W2979218902C9652623 @default.
- W2979218902 hasLocation W29792189021 @default.
- W2979218902 hasOpenAccess W2979218902 @default.
- W2979218902 hasPrimaryLocation W29792189021 @default.
- W2979218902 hasRelatedWork W1537348567 @default.
- W2979218902 hasRelatedWork W1988575564 @default.
- W2979218902 hasRelatedWork W2467510144 @default.
- W2979218902 hasRelatedWork W2493343568 @default.
- W2979218902 hasRelatedWork W2509136690 @default.
- W2979218902 hasRelatedWork W2750143536 @default.
- W2979218902 hasRelatedWork W2942500800 @default.
- W2979218902 hasRelatedWork W2990715092 @default.
- W2979218902 hasRelatedWork W2990751793 @default.
- W2979218902 hasRelatedWork W2999142621 @default.
- W2979218902 hasRelatedWork W3019740544 @default.
- W2979218902 hasRelatedWork W3026935323 @default.
- W2979218902 hasRelatedWork W3047483688 @default.
- W2979218902 hasRelatedWork W3119207556 @default.
- W2979218902 hasRelatedWork W3122277009 @default.
- W2979218902 hasRelatedWork W3125014563 @default.
- W2979218902 hasRelatedWork W3125591981 @default.
- W2979218902 hasRelatedWork W3191472555 @default.
- W2979218902 hasRelatedWork W3013289620 @default.
- W2979218902 hasRelatedWork W3122094240 @default.
- W2979218902 isParatext "false" @default.
- W2979218902 isRetracted "false" @default.
- W2979218902 magId "2979218902" @default.
- W2979218902 workType "article" @default.