Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979328438> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2979328438 abstract "Segmentation for tracking surgical instruments plays an important role in robot-assisted surgery. Segmentation of surgical instruments contributes to capturing accurate spatial information for tracking. In this paper, a novel network, Refined Attention Segmentation Network, is proposed to simultaneously segment surgical instruments and identify their categories. The U-shape network which is popular in segmentation is used. Different from previous work, an attention module is adopted to help the network focus on key regions, which can improve the segmentation accuracy. To solve the class imbalance problem, the weighted sum of the cross entropy loss and the logarithm of the Jaccard index is used as loss function. Furthermore, transfer learning is adopted in our network. The encoder is pre-trained on ImageNet. The dataset from the MICCAI EndoVis Challenge 2017 is used to evaluate our network. Based on this dataset, our network achieves state-of-the-art performance 94.65% mean Dice and 90.33% mean IOU." @default.
- W2979328438 created "2019-10-18" @default.
- W2979328438 creator A5033076846 @default.
- W2979328438 creator A5038613343 @default.
- W2979328438 creator A5038907015 @default.
- W2979328438 creator A5065679716 @default.
- W2979328438 creator A5068915028 @default.
- W2979328438 creator A5069765960 @default.
- W2979328438 date "2019-07-01" @default.
- W2979328438 modified "2023-10-01" @default.
- W2979328438 title "RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network" @default.
- W2979328438 cites W2194775991 @default.
- W2979328438 cites W2604690505 @default.
- W2979328438 cites W2752782242 @default.
- W2979328438 cites W2755397839 @default.
- W2979328438 cites W2755513326 @default.
- W2979328438 cites W2799166040 @default.
- W2979328438 cites W2963647178 @default.
- W2979328438 cites W3098609708 @default.
- W2979328438 doi "https://doi.org/10.1109/embc.2019.8856495" @default.
- W2979328438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31947155" @default.
- W2979328438 hasPublicationYear "2019" @default.
- W2979328438 type Work @default.
- W2979328438 sameAs 2979328438 @default.
- W2979328438 citedByCount "42" @default.
- W2979328438 countsByYear W29793284382019 @default.
- W2979328438 countsByYear W29793284382020 @default.
- W2979328438 countsByYear W29793284382021 @default.
- W2979328438 countsByYear W29793284382022 @default.
- W2979328438 countsByYear W29793284382023 @default.
- W2979328438 crossrefType "proceedings-article" @default.
- W2979328438 hasAuthorship W2979328438A5033076846 @default.
- W2979328438 hasAuthorship W2979328438A5038613343 @default.
- W2979328438 hasAuthorship W2979328438A5038907015 @default.
- W2979328438 hasAuthorship W2979328438A5065679716 @default.
- W2979328438 hasAuthorship W2979328438A5068915028 @default.
- W2979328438 hasAuthorship W2979328438A5069765960 @default.
- W2979328438 hasBestOaLocation W29793284382 @default.
- W2979328438 hasConcept C108583219 @default.
- W2979328438 hasConcept C111919701 @default.
- W2979328438 hasConcept C118505674 @default.
- W2979328438 hasConcept C120665830 @default.
- W2979328438 hasConcept C121332964 @default.
- W2979328438 hasConcept C124504099 @default.
- W2979328438 hasConcept C153180895 @default.
- W2979328438 hasConcept C154945302 @default.
- W2979328438 hasConcept C192209626 @default.
- W2979328438 hasConcept C203519979 @default.
- W2979328438 hasConcept C22029948 @default.
- W2979328438 hasConcept C2524010 @default.
- W2979328438 hasConcept C31972630 @default.
- W2979328438 hasConcept C33923547 @default.
- W2979328438 hasConcept C41008148 @default.
- W2979328438 hasConcept C89600930 @default.
- W2979328438 hasConceptScore W2979328438C108583219 @default.
- W2979328438 hasConceptScore W2979328438C111919701 @default.
- W2979328438 hasConceptScore W2979328438C118505674 @default.
- W2979328438 hasConceptScore W2979328438C120665830 @default.
- W2979328438 hasConceptScore W2979328438C121332964 @default.
- W2979328438 hasConceptScore W2979328438C124504099 @default.
- W2979328438 hasConceptScore W2979328438C153180895 @default.
- W2979328438 hasConceptScore W2979328438C154945302 @default.
- W2979328438 hasConceptScore W2979328438C192209626 @default.
- W2979328438 hasConceptScore W2979328438C203519979 @default.
- W2979328438 hasConceptScore W2979328438C22029948 @default.
- W2979328438 hasConceptScore W2979328438C2524010 @default.
- W2979328438 hasConceptScore W2979328438C31972630 @default.
- W2979328438 hasConceptScore W2979328438C33923547 @default.
- W2979328438 hasConceptScore W2979328438C41008148 @default.
- W2979328438 hasConceptScore W2979328438C89600930 @default.
- W2979328438 hasLocation W29793284381 @default.
- W2979328438 hasLocation W29793284382 @default.
- W2979328438 hasLocation W29793284383 @default.
- W2979328438 hasOpenAccess W2979328438 @default.
- W2979328438 hasPrimaryLocation W29793284381 @default.
- W2979328438 hasRelatedWork W2069533927 @default.
- W2979328438 hasRelatedWork W2441762250 @default.
- W2979328438 hasRelatedWork W2960184797 @default.
- W2979328438 hasRelatedWork W2971066617 @default.
- W2979328438 hasRelatedWork W3093926553 @default.
- W2979328438 hasRelatedWork W3094077541 @default.
- W2979328438 hasRelatedWork W3120092106 @default.
- W2979328438 hasRelatedWork W4230417392 @default.
- W2979328438 hasRelatedWork W4285827401 @default.
- W2979328438 hasRelatedWork W4385154950 @default.
- W2979328438 isParatext "false" @default.
- W2979328438 isRetracted "false" @default.
- W2979328438 magId "2979328438" @default.
- W2979328438 workType "article" @default.