Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979358393> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2979358393 endingPage "119" @default.
- W2979358393 startingPage "110" @default.
- W2979358393 abstract "In this paper we propose a model for controllable synthesis of 3D (volumetric) medical image data. The model is comprised of three components which are learnt simultaneously from unlabelled data through self-supervision: (i) a multi-tissue anatomical model, (ii) a probability distribution over deformations of this anatomical model, and, (iii) a probability distribution over ‘renderings’ of the anatomical model (where a rendering defines the relationship between anatomy and resulting pixel intensities). After training, synthetic data can be generated by sampling the deformation and rendering distributions. To encourage meaningful correspondence in the learnt anatomical model the renderer is kept simple during training, however once trained the (deformed) anatomical model provides dense multi-class segmentation masks for all training volumes, which can be used directly for state-of-the-art conditional image synthesis. This factored model based approach to data synthesis has a number of advantages: Firstly, it allows for coherent synthesis of realistic 3D data, as it is only necessary to learn low dimensional generative models (over deformations and renderings) rather than over the high dimensional 3D images themselves. Secondly, as a by-product of the anatomical model we implicitly learn a dense correspondence between all training volumes, which can be used for registration, or one-shot segmentation (through label transfer). Lastly, the factored representation allows for modality transfer (rendering one image in the modality of another), and meaningful interpolation between volumes. We demonstrate the proposed approach on cardiac MR, and multi-modal abdominal MR/CT datasets." @default.
- W2979358393 created "2019-10-18" @default.
- W2979358393 creator A5011196791 @default.
- W2979358393 creator A5024238285 @default.
- W2979358393 date "2019-01-01" @default.
- W2979358393 modified "2023-10-04" @default.
- W2979358393 title "3D Medical Image Synthesis by Factorised Representation and Deformable Model Learning" @default.
- W2979358393 cites W1987291471 @default.
- W2979358393 cites W2039466015 @default.
- W2979358393 cites W2070894671 @default.
- W2979358393 cites W2163922914 @default.
- W2979358393 cites W2759965110 @default.
- W2979358393 cites W2791621240 @default.
- W2979358393 cites W2794022343 @default.
- W2979358393 cites W2804047627 @default.
- W2979358393 cites W2807725536 @default.
- W2979358393 cites W2890139949 @default.
- W2979358393 cites W2947395348 @default.
- W2979358393 cites W2959170286 @default.
- W2979358393 cites W2961704133 @default.
- W2979358393 cites W2962974533 @default.
- W2979358393 cites W2963800363 @default.
- W2979358393 doi "https://doi.org/10.1007/978-3-030-32778-1_12" @default.
- W2979358393 hasPublicationYear "2019" @default.
- W2979358393 type Work @default.
- W2979358393 sameAs 2979358393 @default.
- W2979358393 citedByCount "7" @default.
- W2979358393 countsByYear W29793583932020 @default.
- W2979358393 countsByYear W29793583932022 @default.
- W2979358393 countsByYear W29793583932023 @default.
- W2979358393 crossrefType "book-chapter" @default.
- W2979358393 hasAuthorship W2979358393A5011196791 @default.
- W2979358393 hasAuthorship W2979358393A5024238285 @default.
- W2979358393 hasConcept C115961682 @default.
- W2979358393 hasConcept C153180895 @default.
- W2979358393 hasConcept C154945302 @default.
- W2979358393 hasConcept C160633673 @default.
- W2979358393 hasConcept C160920958 @default.
- W2979358393 hasConcept C167966045 @default.
- W2979358393 hasConcept C205711294 @default.
- W2979358393 hasConcept C2989087649 @default.
- W2979358393 hasConcept C30769735 @default.
- W2979358393 hasConcept C31972630 @default.
- W2979358393 hasConcept C39890363 @default.
- W2979358393 hasConcept C41008148 @default.
- W2979358393 hasConcept C89600930 @default.
- W2979358393 hasConceptScore W2979358393C115961682 @default.
- W2979358393 hasConceptScore W2979358393C153180895 @default.
- W2979358393 hasConceptScore W2979358393C154945302 @default.
- W2979358393 hasConceptScore W2979358393C160633673 @default.
- W2979358393 hasConceptScore W2979358393C160920958 @default.
- W2979358393 hasConceptScore W2979358393C167966045 @default.
- W2979358393 hasConceptScore W2979358393C205711294 @default.
- W2979358393 hasConceptScore W2979358393C2989087649 @default.
- W2979358393 hasConceptScore W2979358393C30769735 @default.
- W2979358393 hasConceptScore W2979358393C31972630 @default.
- W2979358393 hasConceptScore W2979358393C39890363 @default.
- W2979358393 hasConceptScore W2979358393C41008148 @default.
- W2979358393 hasConceptScore W2979358393C89600930 @default.
- W2979358393 hasLocation W29793583931 @default.
- W2979358393 hasOpenAccess W2979358393 @default.
- W2979358393 hasPrimaryLocation W29793583931 @default.
- W2979358393 hasRelatedWork W121273120 @default.
- W2979358393 hasRelatedWork W1669643531 @default.
- W2979358393 hasRelatedWork W2005437358 @default.
- W2979358393 hasRelatedWork W2008656436 @default.
- W2979358393 hasRelatedWork W2023558673 @default.
- W2979358393 hasRelatedWork W2048402902 @default.
- W2979358393 hasRelatedWork W2134924024 @default.
- W2979358393 hasRelatedWork W2337415362 @default.
- W2979358393 hasRelatedWork W2517104666 @default.
- W2979358393 hasRelatedWork W4312857205 @default.
- W2979358393 isParatext "false" @default.
- W2979358393 isRetracted "false" @default.
- W2979358393 magId "2979358393" @default.
- W2979358393 workType "book-chapter" @default.