Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979409724> ?p ?o ?g. }
- W2979409724 endingPage "62" @default.
- W2979409724 startingPage "53" @default.
- W2979409724 abstract "Major depressive disorder is a primary cause of disability in adults with a lifetime prevalence of 6–21% worldwide. While medical treatment may provide symptomatic relief, response to any given antidepressant is unpredictable and patient-specific. The standard of care requires a patient to sequentially test different antidepressants for 3 months each until an optimal treatment has been identified. For 30–40% of patients, no effective treatment is found after more than one year of this trial-and-error process, during which a patient may suffer loss of employment or marriage, undertreated symptoms, and suicidal ideation. This work develops a predictive model that may be used to expedite the treatment selection process by identifying for individual patients whether the patient will respond favorably to bupropion, a widely prescribed antidepressant, using only pretreatment imaging data. This is the first model to do so for individuals for bupropion. Specifically, a deep learning predictor is trained to estimate the 8-week change in Hamilton Rating Scale for Depression (HAMD) score from pretreatment task-based functional magnetic resonance imaging (fMRI) obtained in a randomized controlled antidepressant trial. An unbiased neural architecture search is conducted over 800 distinct model architecture and brain parcellation combinations, and patterns of model hyperparameters yielding the highest prediction accuracy are revealed. The winning model identifies bupropion-treated subjects who will experience remission with the number of subjects needed-to-treat (NNT) to lower morbidity of only 3.2 subjects. It attains a substantially high neuroimaging study effect size explaining 26% of the variance ($$R^2 = 0.26$$) and the model predicts post-treatment change in the 52-point HAMD score with an RMSE of 4.71. These results support the continued development of fMRI and deep learning-based predictors of response for additional depression treatments." @default.
- W2979409724 created "2019-10-18" @default.
- W2979409724 creator A5014599959 @default.
- W2979409724 creator A5028368152 @default.
- W2979409724 creator A5068432327 @default.
- W2979409724 creator A5071042824 @default.
- W2979409724 creator A5071375877 @default.
- W2979409724 creator A5081426855 @default.
- W2979409724 date "2019-01-01" @default.
- W2979409724 modified "2023-09-27" @default.
- W2979409724 title "Predicting Response to the Antidepressant Bupropion Using Pretreatment fMRI" @default.
- W2979409724 cites W1500342109 @default.
- W2979409724 cites W1994576679 @default.
- W2979409724 cites W2039056175 @default.
- W2979409724 cites W2050355776 @default.
- W2979409724 cites W2050486061 @default.
- W2979409724 cites W2058494291 @default.
- W2979409724 cites W2120182640 @default.
- W2979409724 cites W2122457251 @default.
- W2979409724 cites W2132324173 @default.
- W2979409724 cites W2141007997 @default.
- W2979409724 cites W2149402043 @default.
- W2979409724 cites W2155054485 @default.
- W2979409724 cites W2162541816 @default.
- W2979409724 cites W2168253623 @default.
- W2979409724 cites W2171827981 @default.
- W2979409724 cites W2298299786 @default.
- W2979409724 cites W2340565776 @default.
- W2979409724 cites W2346343209 @default.
- W2979409724 cites W2737966001 @default.
- W2979409724 cites W2738849673 @default.
- W2979409724 cites W2791353294 @default.
- W2979409724 cites W2800231721 @default.
- W2979409724 cites W2951617899 @default.
- W2979409724 doi "https://doi.org/10.1007/978-3-030-32281-6_6" @default.
- W2979409724 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6839715" @default.
- W2979409724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31709423" @default.
- W2979409724 hasPublicationYear "2019" @default.
- W2979409724 type Work @default.
- W2979409724 sameAs 2979409724 @default.
- W2979409724 citedByCount "11" @default.
- W2979409724 countsByYear W29794097242020 @default.
- W2979409724 countsByYear W29794097242021 @default.
- W2979409724 countsByYear W29794097242022 @default.
- W2979409724 countsByYear W29794097242023 @default.
- W2979409724 crossrefType "book-chapter" @default.
- W2979409724 hasAuthorship W2979409724A5014599959 @default.
- W2979409724 hasAuthorship W2979409724A5028368152 @default.
- W2979409724 hasAuthorship W2979409724A5068432327 @default.
- W2979409724 hasAuthorship W2979409724A5071042824 @default.
- W2979409724 hasAuthorship W2979409724A5071375877 @default.
- W2979409724 hasAuthorship W2979409724A5081426855 @default.
- W2979409724 hasBestOaLocation W29794097242 @default.
- W2979409724 hasConcept C118552586 @default.
- W2979409724 hasConcept C126838900 @default.
- W2979409724 hasConcept C138496976 @default.
- W2979409724 hasConcept C142724271 @default.
- W2979409724 hasConcept C15744967 @default.
- W2979409724 hasConcept C2776466505 @default.
- W2979409724 hasConcept C2777843972 @default.
- W2979409724 hasConcept C2779177272 @default.
- W2979409724 hasConcept C2779226451 @default.
- W2979409724 hasConcept C2779908668 @default.
- W2979409724 hasConcept C2780051608 @default.
- W2979409724 hasConcept C2780733359 @default.
- W2979409724 hasConcept C558461103 @default.
- W2979409724 hasConcept C58693492 @default.
- W2979409724 hasConcept C71924100 @default.
- W2979409724 hasConcept C83849319 @default.
- W2979409724 hasConceptScore W2979409724C118552586 @default.
- W2979409724 hasConceptScore W2979409724C126838900 @default.
- W2979409724 hasConceptScore W2979409724C138496976 @default.
- W2979409724 hasConceptScore W2979409724C142724271 @default.
- W2979409724 hasConceptScore W2979409724C15744967 @default.
- W2979409724 hasConceptScore W2979409724C2776466505 @default.
- W2979409724 hasConceptScore W2979409724C2777843972 @default.
- W2979409724 hasConceptScore W2979409724C2779177272 @default.
- W2979409724 hasConceptScore W2979409724C2779226451 @default.
- W2979409724 hasConceptScore W2979409724C2779908668 @default.
- W2979409724 hasConceptScore W2979409724C2780051608 @default.
- W2979409724 hasConceptScore W2979409724C2780733359 @default.
- W2979409724 hasConceptScore W2979409724C558461103 @default.
- W2979409724 hasConceptScore W2979409724C58693492 @default.
- W2979409724 hasConceptScore W2979409724C71924100 @default.
- W2979409724 hasConceptScore W2979409724C83849319 @default.
- W2979409724 hasLocation W29794097241 @default.
- W2979409724 hasLocation W29794097242 @default.
- W2979409724 hasLocation W29794097243 @default.
- W2979409724 hasLocation W29794097244 @default.
- W2979409724 hasOpenAccess W2979409724 @default.
- W2979409724 hasPrimaryLocation W29794097241 @default.
- W2979409724 hasRelatedWork W1486828543 @default.
- W2979409724 hasRelatedWork W2016510258 @default.
- W2979409724 hasRelatedWork W2023180807 @default.
- W2979409724 hasRelatedWork W2049177233 @default.
- W2979409724 hasRelatedWork W2067998521 @default.
- W2979409724 hasRelatedWork W2072930423 @default.
- W2979409724 hasRelatedWork W2113302965 @default.