Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979411934> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2979411934 abstract "The adoption of data aggregation depending on data fusion and data acquisition for wireless sensor networks (WSN) is increasing these days. While in WSN, the sensor node senses data and send them to the end node. The application of WSN gets limited due to its features such as low-cost sensor nodes, limited battery backups. The usage of sensor nodes in WSN becomes prone to faulty behavior due to its resource constraint and easily gets defected. Predictive detection using data fusion can be a better choice in order to detect the fault with low transmission energy and low power usage. Considering the conditions of the sensor node with its limited capacity of storing and processing of data, a hybrid predictive classification technique is proposed by using the Kalman filter with Extreme learning machine. Here for data fusion Kalman filter is used to train the sink node with the faulty pattern of data in place of training it with the larger amount. In addition, Extreme learning machine (ELM) is used as a predictive classifier, which can provide a high prediction with low communication overhead. The proposed work is evaluated using standard WSN data by inserting random anomalies to it. The performance is measured in terms of detection accuracy and computational time." @default.
- W2979411934 created "2019-10-18" @default.
- W2979411934 creator A5035253293 @default.
- W2979411934 creator A5040052812 @default.
- W2979411934 creator A5081007393 @default.
- W2979411934 creator A5089680439 @default.
- W2979411934 date "2019-04-01" @default.
- W2979411934 modified "2023-10-17" @default.
- W2979411934 title "Fault Detection using hybrid of KF-ELM for Wireless Sensor Networks" @default.
- W2979411934 cites W1964585049 @default.
- W2979411934 cites W1964768963 @default.
- W2979411934 cites W2007024656 @default.
- W2979411934 cites W2031358797 @default.
- W2979411934 cites W2036014202 @default.
- W2979411934 cites W2053757807 @default.
- W2979411934 cites W2100604996 @default.
- W2979411934 cites W2111072639 @default.
- W2979411934 cites W2165847864 @default.
- W2979411934 cites W2168720188 @default.
- W2979411934 cites W3100857292 @default.
- W2979411934 doi "https://doi.org/10.1109/icoei.2019.8862687" @default.
- W2979411934 hasPublicationYear "2019" @default.
- W2979411934 type Work @default.
- W2979411934 sameAs 2979411934 @default.
- W2979411934 citedByCount "10" @default.
- W2979411934 countsByYear W29794119342020 @default.
- W2979411934 countsByYear W29794119342021 @default.
- W2979411934 countsByYear W29794119342022 @default.
- W2979411934 countsByYear W29794119342023 @default.
- W2979411934 crossrefType "proceedings-article" @default.
- W2979411934 hasAuthorship W2979411934A5035253293 @default.
- W2979411934 hasAuthorship W2979411934A5040052812 @default.
- W2979411934 hasAuthorship W2979411934A5081007393 @default.
- W2979411934 hasAuthorship W2979411934A5089680439 @default.
- W2979411934 hasConcept C108037233 @default.
- W2979411934 hasConcept C111185680 @default.
- W2979411934 hasConcept C111919701 @default.
- W2979411934 hasConcept C152745839 @default.
- W2979411934 hasConcept C154945302 @default.
- W2979411934 hasConcept C157286648 @default.
- W2979411934 hasConcept C172707124 @default.
- W2979411934 hasConcept C24590314 @default.
- W2979411934 hasConcept C2779960059 @default.
- W2979411934 hasConcept C2780150128 @default.
- W2979411934 hasConcept C31258907 @default.
- W2979411934 hasConcept C33954974 @default.
- W2979411934 hasConcept C41008148 @default.
- W2979411934 hasConcept C41971633 @default.
- W2979411934 hasConcept C50644808 @default.
- W2979411934 hasConcept C555944384 @default.
- W2979411934 hasConcept C557945733 @default.
- W2979411934 hasConcept C76155785 @default.
- W2979411934 hasConcept C79403827 @default.
- W2979411934 hasConceptScore W2979411934C108037233 @default.
- W2979411934 hasConceptScore W2979411934C111185680 @default.
- W2979411934 hasConceptScore W2979411934C111919701 @default.
- W2979411934 hasConceptScore W2979411934C152745839 @default.
- W2979411934 hasConceptScore W2979411934C154945302 @default.
- W2979411934 hasConceptScore W2979411934C157286648 @default.
- W2979411934 hasConceptScore W2979411934C172707124 @default.
- W2979411934 hasConceptScore W2979411934C24590314 @default.
- W2979411934 hasConceptScore W2979411934C2779960059 @default.
- W2979411934 hasConceptScore W2979411934C2780150128 @default.
- W2979411934 hasConceptScore W2979411934C31258907 @default.
- W2979411934 hasConceptScore W2979411934C33954974 @default.
- W2979411934 hasConceptScore W2979411934C41008148 @default.
- W2979411934 hasConceptScore W2979411934C41971633 @default.
- W2979411934 hasConceptScore W2979411934C50644808 @default.
- W2979411934 hasConceptScore W2979411934C555944384 @default.
- W2979411934 hasConceptScore W2979411934C557945733 @default.
- W2979411934 hasConceptScore W2979411934C76155785 @default.
- W2979411934 hasConceptScore W2979411934C79403827 @default.
- W2979411934 hasLocation W29794119341 @default.
- W2979411934 hasOpenAccess W2979411934 @default.
- W2979411934 hasPrimaryLocation W29794119341 @default.
- W2979411934 hasRelatedWork W1630534680 @default.
- W2979411934 hasRelatedWork W1690640450 @default.
- W2979411934 hasRelatedWork W1991276626 @default.
- W2979411934 hasRelatedWork W2108251534 @default.
- W2979411934 hasRelatedWork W2145666293 @default.
- W2979411934 hasRelatedWork W2155066697 @default.
- W2979411934 hasRelatedWork W2245184484 @default.
- W2979411934 hasRelatedWork W2390790606 @default.
- W2979411934 hasRelatedWork W2768101539 @default.
- W2979411934 hasRelatedWork W4244471165 @default.
- W2979411934 isParatext "false" @default.
- W2979411934 isRetracted "false" @default.
- W2979411934 magId "2979411934" @default.
- W2979411934 workType "article" @default.