Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979415872> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2979415872 abstract "Rapid esophageal radiation treatment planning is often obstructed by manually adjusting optimization parameters. The adjustment process is commonly guided by the dose-volume histogram (DVH), which evaluates dosimetry at planning target volume (PTV) and organs at risk (OARs). DVH is highly correlated with the geometrical relationship between PTV and OARs, which motivates us to explore deep learning techniques to model such correlation and predict DVHs of different OARs. Distance to target histogram (DTH) is chosen to measure the geometrical relationship between PTV and OARs. DTH and DVH features are then undergone dimension reduction by autoencoder. The reduced feature vectors are finally imported into deep belief network to model the correlation between DTH and DVH. This correlation can be used to predict DVH of the corresponding OAR for new patients. Validation results revealed that the relative dose difference of the predicted and clinical DVHs on four different OARs were less than 3%. These promising results suggested that the predicted DVH could provide near-optimal parameters to significantly reduce the planning time." @default.
- W2979415872 created "2019-10-18" @default.
- W2979415872 creator A5021318566 @default.
- W2979415872 creator A5025751463 @default.
- W2979415872 creator A5033761498 @default.
- W2979415872 creator A5061671556 @default.
- W2979415872 creator A5084934689 @default.
- W2979415872 date "2019-07-01" @default.
- W2979415872 modified "2023-09-27" @default.
- W2979415872 title "Deep Learning Based Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning" @default.
- W2979415872 cites W1014379658 @default.
- W2979415872 cites W1963932209 @default.
- W2979415872 cites W1987419782 @default.
- W2979415872 cites W2053162035 @default.
- W2979415872 cites W2100495367 @default.
- W2979415872 cites W2171180669 @default.
- W2979415872 cites W2919115771 @default.
- W2979415872 doi "https://doi.org/10.1109/embc.2019.8856819" @default.
- W2979415872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31946032" @default.
- W2979415872 hasPublicationYear "2019" @default.
- W2979415872 type Work @default.
- W2979415872 sameAs 2979415872 @default.
- W2979415872 citedByCount "2" @default.
- W2979415872 countsByYear W29794158722021 @default.
- W2979415872 countsByYear W29794158722022 @default.
- W2979415872 crossrefType "proceedings-article" @default.
- W2979415872 hasAuthorship W2979415872A5021318566 @default.
- W2979415872 hasAuthorship W2979415872A5025751463 @default.
- W2979415872 hasAuthorship W2979415872A5033761498 @default.
- W2979415872 hasAuthorship W2979415872A5061671556 @default.
- W2979415872 hasAuthorship W2979415872A5084934689 @default.
- W2979415872 hasConcept C101738243 @default.
- W2979415872 hasConcept C108583219 @default.
- W2979415872 hasConcept C115961682 @default.
- W2979415872 hasConcept C126838900 @default.
- W2979415872 hasConcept C154945302 @default.
- W2979415872 hasConcept C201645570 @default.
- W2979415872 hasConcept C2780198649 @default.
- W2979415872 hasConcept C2989005 @default.
- W2979415872 hasConcept C33923547 @default.
- W2979415872 hasConcept C41008148 @default.
- W2979415872 hasConcept C509974204 @default.
- W2979415872 hasConcept C53533937 @default.
- W2979415872 hasConcept C71924100 @default.
- W2979415872 hasConcept C75088862 @default.
- W2979415872 hasConceptScore W2979415872C101738243 @default.
- W2979415872 hasConceptScore W2979415872C108583219 @default.
- W2979415872 hasConceptScore W2979415872C115961682 @default.
- W2979415872 hasConceptScore W2979415872C126838900 @default.
- W2979415872 hasConceptScore W2979415872C154945302 @default.
- W2979415872 hasConceptScore W2979415872C201645570 @default.
- W2979415872 hasConceptScore W2979415872C2780198649 @default.
- W2979415872 hasConceptScore W2979415872C2989005 @default.
- W2979415872 hasConceptScore W2979415872C33923547 @default.
- W2979415872 hasConceptScore W2979415872C41008148 @default.
- W2979415872 hasConceptScore W2979415872C509974204 @default.
- W2979415872 hasConceptScore W2979415872C53533937 @default.
- W2979415872 hasConceptScore W2979415872C71924100 @default.
- W2979415872 hasConceptScore W2979415872C75088862 @default.
- W2979415872 hasLocation W29794158721 @default.
- W2979415872 hasLocation W29794158722 @default.
- W2979415872 hasOpenAccess W2979415872 @default.
- W2979415872 hasPrimaryLocation W29794158721 @default.
- W2979415872 hasRelatedWork W1538807288 @default.
- W2979415872 hasRelatedWork W1899483886 @default.
- W2979415872 hasRelatedWork W1976466193 @default.
- W2979415872 hasRelatedWork W1987445093 @default.
- W2979415872 hasRelatedWork W1995948262 @default.
- W2979415872 hasRelatedWork W2029797738 @default.
- W2979415872 hasRelatedWork W2043386570 @default.
- W2979415872 hasRelatedWork W2065040658 @default.
- W2979415872 hasRelatedWork W3178053683 @default.
- W2979415872 hasRelatedWork W3201624689 @default.
- W2979415872 isParatext "false" @default.
- W2979415872 isRetracted "false" @default.
- W2979415872 magId "2979415872" @default.
- W2979415872 workType "article" @default.