Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979427086> ?p ?o ?g. }
- W2979427086 abstract "Choosing the most adequate kernel is crucial in many Machine Learning applications. Gaussian Process is a state-of-the-art technique for regression and classification that heavily relies on a kernel function. However, in the Gaussian Process literature, kernels have usually been either ad hoc designed, selected from a predefined set, or searched for in a space of compositions of kernels which have been defined a priori. In this paper, we propose a Genetic-Programming algorithm that represents a kernel function as a tree of elementary mathematical expressions. By means of this representation, a wider set of kernels can be modeled, where potentially better solutions can be found, although new challenges also arise. The proposed algorithm is able to overcome these difficulties and find kernels that accurately model the characteristics of the data. This method has been tested in several real-world time-series extrapolation problems, improving the state-of-the-art results while reducing the complexity of the kernels." @default.
- W2979427086 created "2019-10-18" @default.
- W2979427086 creator A5001059406 @default.
- W2979427086 creator A5034080501 @default.
- W2979427086 creator A5050500830 @default.
- W2979427086 creator A5051966806 @default.
- W2979427086 date "2019-10-11" @default.
- W2979427086 modified "2023-09-27" @default.
- W2979427086 title "Evolving Gaussian Process kernels from elementary mathematical expressions." @default.
- W2979427086 cites W1567012231 @default.
- W2979427086 cites W1567512734 @default.
- W2979427086 cites W1576818901 @default.
- W2979427086 cites W1591346633 @default.
- W2979427086 cites W1746819321 @default.
- W2979427086 cites W1765961089 @default.
- W2979427086 cites W1877740990 @default.
- W2979427086 cites W1950803081 @default.
- W2979427086 cites W1963375715 @default.
- W2979427086 cites W1971421855 @default.
- W2979427086 cites W1974758710 @default.
- W2979427086 cites W1978917315 @default.
- W2979427086 cites W1984186051 @default.
- W2979427086 cites W2025126377 @default.
- W2979427086 cites W2027649639 @default.
- W2979427086 cites W2031823405 @default.
- W2979427086 cites W2034831667 @default.
- W2979427086 cites W2073630583 @default.
- W2979427086 cites W2075298172 @default.
- W2979427086 cites W2097929764 @default.
- W2979427086 cites W2099201756 @default.
- W2979427086 cites W2109042184 @default.
- W2979427086 cites W2114013702 @default.
- W2979427086 cites W2120862619 @default.
- W2979427086 cites W2125849100 @default.
- W2979427086 cites W2132958270 @default.
- W2979427086 cites W2133104104 @default.
- W2979427086 cites W2136816045 @default.
- W2979427086 cites W2142575165 @default.
- W2979427086 cites W2142959074 @default.
- W2979427086 cites W2152564753 @default.
- W2979427086 cites W2152937653 @default.
- W2979427086 cites W2160215259 @default.
- W2979427086 cites W2162724919 @default.
- W2979427086 cites W2165962156 @default.
- W2979427086 cites W2168175751 @default.
- W2979427086 cites W2319026302 @default.
- W2979427086 cites W2400159152 @default.
- W2979427086 cites W2551909671 @default.
- W2979427086 cites W2555374257 @default.
- W2979427086 cites W2563370810 @default.
- W2979427086 cites W2594788739 @default.
- W2979427086 cites W2951308445 @default.
- W2979427086 cites W2962731272 @default.
- W2979427086 cites W2964172739 @default.
- W2979427086 cites W2964308928 @default.
- W2979427086 cites W69755908 @default.
- W2979427086 cites W824892955 @default.
- W2979427086 hasPublicationYear "2019" @default.
- W2979427086 type Work @default.
- W2979427086 sameAs 2979427086 @default.
- W2979427086 citedByCount "0" @default.
- W2979427086 crossrefType "posted-content" @default.
- W2979427086 hasAuthorship W2979427086A5001059406 @default.
- W2979427086 hasAuthorship W2979427086A5034080501 @default.
- W2979427086 hasAuthorship W2979427086A5050500830 @default.
- W2979427086 hasAuthorship W2979427086A5051966806 @default.
- W2979427086 hasConcept C105795698 @default.
- W2979427086 hasConcept C110332635 @default.
- W2979427086 hasConcept C111472728 @default.
- W2979427086 hasConcept C111919701 @default.
- W2979427086 hasConcept C113174947 @default.
- W2979427086 hasConcept C11413529 @default.
- W2979427086 hasConcept C114614502 @default.
- W2979427086 hasConcept C119857082 @default.
- W2979427086 hasConcept C121332964 @default.
- W2979427086 hasConcept C122280245 @default.
- W2979427086 hasConcept C12267149 @default.
- W2979427086 hasConcept C132459708 @default.
- W2979427086 hasConcept C134306372 @default.
- W2979427086 hasConcept C138885662 @default.
- W2979427086 hasConcept C154945302 @default.
- W2979427086 hasConcept C163716315 @default.
- W2979427086 hasConcept C177264268 @default.
- W2979427086 hasConcept C17744445 @default.
- W2979427086 hasConcept C199360897 @default.
- W2979427086 hasConcept C199539241 @default.
- W2979427086 hasConcept C2776359362 @default.
- W2979427086 hasConcept C33923547 @default.
- W2979427086 hasConcept C41008148 @default.
- W2979427086 hasConcept C61326573 @default.
- W2979427086 hasConcept C62520636 @default.
- W2979427086 hasConcept C62799726 @default.
- W2979427086 hasConcept C7218915 @default.
- W2979427086 hasConcept C74193536 @default.
- W2979427086 hasConcept C75553542 @default.
- W2979427086 hasConcept C80884492 @default.
- W2979427086 hasConcept C81692654 @default.
- W2979427086 hasConcept C94625758 @default.
- W2979427086 hasConcept C98045186 @default.
- W2979427086 hasConceptScore W2979427086C105795698 @default.