Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979429529> ?p ?o ?g. }
- W2979429529 abstract "Abstract Background Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. Methods Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm −1 to 500 cm −1 . The spectra were cleaned to compensate for atmospheric water vapour and CO 2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. Results Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. Conclusion These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance." @default.
- W2979429529 created "2019-10-18" @default.
- W2979429529 creator A5003348064 @default.
- W2979429529 creator A5009103834 @default.
- W2979429529 creator A5010122896 @default.
- W2979429529 creator A5010691400 @default.
- W2979429529 creator A5016622547 @default.
- W2979429529 creator A5019824545 @default.
- W2979429529 creator A5026755587 @default.
- W2979429529 creator A5033210349 @default.
- W2979429529 creator A5033891334 @default.
- W2979429529 creator A5034347923 @default.
- W2979429529 creator A5043574074 @default.
- W2979429529 creator A5047840508 @default.
- W2979429529 creator A5060598163 @default.
- W2979429529 creator A5060774935 @default.
- W2979429529 creator A5070600716 @default.
- W2979429529 creator A5073385457 @default.
- W2979429529 creator A5073646818 @default.
- W2979429529 creator A5084326492 @default.
- W2979429529 creator A5087982871 @default.
- W2979429529 date "2019-10-07" @default.
- W2979429529 modified "2023-10-17" @default.
- W2979429529 title "Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis" @default.
- W2979429529 cites W1970137783 @default.
- W2979429529 cites W1971043712 @default.
- W2979429529 cites W1977784023 @default.
- W2979429529 cites W1996966473 @default.
- W2979429529 cites W2021338594 @default.
- W2979429529 cites W2021406349 @default.
- W2979429529 cites W2038442832 @default.
- W2979429529 cites W2041149170 @default.
- W2979429529 cites W2043762150 @default.
- W2979429529 cites W2044720125 @default.
- W2979429529 cites W2053315960 @default.
- W2979429529 cites W2071195067 @default.
- W2979429529 cites W2075948313 @default.
- W2979429529 cites W2079707064 @default.
- W2979429529 cites W2088824647 @default.
- W2979429529 cites W2096652886 @default.
- W2979429529 cites W2107395586 @default.
- W2979429529 cites W2116194927 @default.
- W2979429529 cites W2116642008 @default.
- W2979429529 cites W2121049991 @default.
- W2979429529 cites W2125263196 @default.
- W2979429529 cites W2144029515 @default.
- W2979429529 cites W2146354591 @default.
- W2979429529 cites W2149473605 @default.
- W2979429529 cites W2164032493 @default.
- W2979429529 cites W2166636432 @default.
- W2979429529 cites W2172143112 @default.
- W2979429529 cites W2276635134 @default.
- W2979429529 cites W2288916557 @default.
- W2979429529 cites W2320624777 @default.
- W2979429529 cites W2471500381 @default.
- W2979429529 cites W2605965537 @default.
- W2979429529 cites W2618410944 @default.
- W2979429529 cites W2767622498 @default.
- W2979429529 cites W2786896727 @default.
- W2979429529 cites W2800064658 @default.
- W2979429529 cites W2802572370 @default.
- W2979429529 cites W2804530867 @default.
- W2979429529 cites W2809162223 @default.
- W2979429529 cites W2809685813 @default.
- W2979429529 cites W2891842459 @default.
- W2979429529 cites W2895997508 @default.
- W2979429529 cites W2908218371 @default.
- W2979429529 cites W2924063905 @default.
- W2979429529 cites W2939214109 @default.
- W2979429529 cites W2944382981 @default.
- W2979429529 cites W2946941934 @default.
- W2979429529 cites W2952276807 @default.
- W2979429529 cites W2967465319 @default.
- W2979429529 doi "https://doi.org/10.1186/s12936-019-2982-9" @default.
- W2979429529 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6781347" @default.
- W2979429529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31590669" @default.
- W2979429529 hasPublicationYear "2019" @default.
- W2979429529 type Work @default.
- W2979429529 sameAs 2979429529 @default.
- W2979429529 citedByCount "27" @default.
- W2979429529 countsByYear W29794295292020 @default.
- W2979429529 countsByYear W29794295292021 @default.
- W2979429529 countsByYear W29794295292022 @default.
- W2979429529 countsByYear W29794295292023 @default.
- W2979429529 crossrefType "journal-article" @default.
- W2979429529 hasAuthorship W2979429529A5003348064 @default.
- W2979429529 hasAuthorship W2979429529A5009103834 @default.
- W2979429529 hasAuthorship W2979429529A5010122896 @default.
- W2979429529 hasAuthorship W2979429529A5010691400 @default.
- W2979429529 hasAuthorship W2979429529A5016622547 @default.
- W2979429529 hasAuthorship W2979429529A5019824545 @default.
- W2979429529 hasAuthorship W2979429529A5026755587 @default.
- W2979429529 hasAuthorship W2979429529A5033210349 @default.
- W2979429529 hasAuthorship W2979429529A5033891334 @default.
- W2979429529 hasAuthorship W2979429529A5034347923 @default.
- W2979429529 hasAuthorship W2979429529A5043574074 @default.
- W2979429529 hasAuthorship W2979429529A5047840508 @default.
- W2979429529 hasAuthorship W2979429529A5060598163 @default.
- W2979429529 hasAuthorship W2979429529A5060774935 @default.
- W2979429529 hasAuthorship W2979429529A5070600716 @default.