Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979464575> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2979464575 endingPage "104318" @default.
- W2979464575 startingPage "104318" @default.
- W2979464575 abstract "Abstract As one of the main technologies of flow visualization, key time steps selection plays a key role in solving storage limit and has been intensively studied. In this paper, we introduce Deep Metric Learning (DML) into key time steps selection for Computational Fluid Dynamics (CFD) data and propose a local selection method based on DML. In specific, the proposed method samples small patches from CFD data, trains a Siamese deep neural network which has a symmetry structure with two Convolutional Neural Networks (CNN), and then selects the key time steps according to the similarities between consecutive time steps which are assessed by the networks. Compared with one of the existing local selection methods, the Myers’s method, our method has advantages in accuracy, precision and recall, and the selection results are better. Experimental results also demonstrate the good generalization of the proposed method on CFD datasets." @default.
- W2979464575 created "2019-10-18" @default.
- W2979464575 creator A5001128136 @default.
- W2979464575 creator A5002661071 @default.
- W2979464575 creator A5023992845 @default.
- W2979464575 creator A5028717426 @default.
- W2979464575 creator A5034484688 @default.
- W2979464575 creator A5035309321 @default.
- W2979464575 creator A5087250235 @default.
- W2979464575 date "2019-12-01" @default.
- W2979464575 modified "2023-09-28" @default.
- W2979464575 title "Key time steps selection for CFD data based on deep metric learning" @default.
- W2979464575 cites W2076063813 @default.
- W2979464575 cites W2101135700 @default.
- W2979464575 cites W2105832013 @default.
- W2979464575 cites W2109759383 @default.
- W2979464575 cites W2131361270 @default.
- W2979464575 cites W2144892774 @default.
- W2979464575 cites W2171590421 @default.
- W2979464575 cites W2346425402 @default.
- W2979464575 cites W2412744095 @default.
- W2979464575 cites W2461598051 @default.
- W2979464575 cites W2534240011 @default.
- W2979464575 cites W2554627467 @default.
- W2979464575 cites W2589310369 @default.
- W2979464575 cites W2780099243 @default.
- W2979464575 cites W2895864597 @default.
- W2979464575 cites W2896969442 @default.
- W2979464575 cites W2930722499 @default.
- W2979464575 cites W4210880854 @default.
- W2979464575 cites W4231109964 @default.
- W2979464575 doi "https://doi.org/10.1016/j.compfluid.2019.104318" @default.
- W2979464575 hasPublicationYear "2019" @default.
- W2979464575 type Work @default.
- W2979464575 sameAs 2979464575 @default.
- W2979464575 citedByCount "3" @default.
- W2979464575 countsByYear W29794645752021 @default.
- W2979464575 countsByYear W29794645752023 @default.
- W2979464575 crossrefType "journal-article" @default.
- W2979464575 hasAuthorship W2979464575A5001128136 @default.
- W2979464575 hasAuthorship W2979464575A5002661071 @default.
- W2979464575 hasAuthorship W2979464575A5023992845 @default.
- W2979464575 hasAuthorship W2979464575A5028717426 @default.
- W2979464575 hasAuthorship W2979464575A5034484688 @default.
- W2979464575 hasAuthorship W2979464575A5035309321 @default.
- W2979464575 hasAuthorship W2979464575A5087250235 @default.
- W2979464575 hasConcept C119857082 @default.
- W2979464575 hasConcept C121332964 @default.
- W2979464575 hasConcept C127413603 @default.
- W2979464575 hasConcept C154945302 @default.
- W2979464575 hasConcept C1633027 @default.
- W2979464575 hasConcept C176217482 @default.
- W2979464575 hasConcept C21547014 @default.
- W2979464575 hasConcept C26517878 @default.
- W2979464575 hasConcept C38652104 @default.
- W2979464575 hasConcept C41008148 @default.
- W2979464575 hasConcept C57879066 @default.
- W2979464575 hasConcept C81917197 @default.
- W2979464575 hasConceptScore W2979464575C119857082 @default.
- W2979464575 hasConceptScore W2979464575C121332964 @default.
- W2979464575 hasConceptScore W2979464575C127413603 @default.
- W2979464575 hasConceptScore W2979464575C154945302 @default.
- W2979464575 hasConceptScore W2979464575C1633027 @default.
- W2979464575 hasConceptScore W2979464575C176217482 @default.
- W2979464575 hasConceptScore W2979464575C21547014 @default.
- W2979464575 hasConceptScore W2979464575C26517878 @default.
- W2979464575 hasConceptScore W2979464575C38652104 @default.
- W2979464575 hasConceptScore W2979464575C41008148 @default.
- W2979464575 hasConceptScore W2979464575C57879066 @default.
- W2979464575 hasConceptScore W2979464575C81917197 @default.
- W2979464575 hasLocation W29794645751 @default.
- W2979464575 hasOpenAccess W2979464575 @default.
- W2979464575 hasPrimaryLocation W29794645751 @default.
- W2979464575 hasRelatedWork W2329452785 @default.
- W2979464575 hasRelatedWork W2356380379 @default.
- W2979464575 hasRelatedWork W2961085424 @default.
- W2979464575 hasRelatedWork W3027915305 @default.
- W2979464575 hasRelatedWork W3046775127 @default.
- W2979464575 hasRelatedWork W4205958290 @default.
- W2979464575 hasRelatedWork W4286629047 @default.
- W2979464575 hasRelatedWork W4306321456 @default.
- W2979464575 hasRelatedWork W4306674287 @default.
- W2979464575 hasRelatedWork W4224009465 @default.
- W2979464575 hasVolume "195" @default.
- W2979464575 isParatext "false" @default.
- W2979464575 isRetracted "false" @default.
- W2979464575 magId "2979464575" @default.
- W2979464575 workType "article" @default.