Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979469919> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2979469919 abstract "Current image-guided prostate radiotherapy often relies on the use of implanted fiducial markers (FMs) or transducers for target localization. Fiducial or transducer insertion requires an invasive procedure that adds cost and risks for bleeding, infection and discomfort to some patients. We are developing a novel markerless prostate localization strategy using a pre-trained deep learning model to interpret routine projection kV X-ray images without the need for daily cone-beam computed tomography (CBCT). A deep learning model was first trained by using one thousand annotated projection X-ray images. The trained model is capable of identifying the location of the prostate target for a given input X-ray projection image. To assess the accuracy of the approach, six patients with prostate cancer received volumetric modulated arc therapy (VMAT) were retrospectively studied. The results obtained by using the deep learning model and the actual position of the prostate were compared quantitatively. Differences between the predicted target positions using DNN and their actual positions are (mean ± standard deviation) (1.66,pm ,0.41) mm, (1.63,pm ,0.48) mm, and 1.64 ± 0.28 mm in anterior-posterior, lateral, and oblique directions, respectively. Target position provided by the deep learning model for the kV images acquired using OBI is found to be consistent that derived from the implanted FMs. This study demonstrates, for the first time, that highly accurate markerless prostate localization based on deep learning is achievable. The strategy provides a clinically valuable solution to daily patient positioning and real-time target tracking for image-guided radiotherapy (IGRT) and interventions." @default.
- W2979469919 created "2019-10-18" @default.
- W2979469919 creator A5001959772 @default.
- W2979469919 creator A5023976830 @default.
- W2979469919 creator A5031290100 @default.
- W2979469919 creator A5039412958 @default.
- W2979469919 creator A5061423926 @default.
- W2979469919 creator A5061512571 @default.
- W2979469919 creator A5072003003 @default.
- W2979469919 date "2019-01-01" @default.
- W2979469919 modified "2023-10-16" @default.
- W2979469919 title "Toward Markerless Image-Guided Radiotherapy Using Deep Learning for Prostate Cancer" @default.
- W2979469919 cites W1986223870 @default.
- W2979469919 cites W2048152878 @default.
- W2979469919 cites W2055777557 @default.
- W2979469919 cites W2096210342 @default.
- W2979469919 cites W2103660681 @default.
- W2979469919 cites W2103857226 @default.
- W2979469919 cites W2246298096 @default.
- W2979469919 cites W2308751262 @default.
- W2979469919 cites W2313339984 @default.
- W2979469919 cites W2560725027 @default.
- W2979469919 cites W2566735149 @default.
- W2979469919 cites W2746549795 @default.
- W2979469919 cites W2756456050 @default.
- W2979469919 cites W2772723798 @default.
- W2979469919 cites W639708223 @default.
- W2979469919 doi "https://doi.org/10.1007/978-3-030-32486-5_5" @default.
- W2979469919 hasPublicationYear "2019" @default.
- W2979469919 type Work @default.
- W2979469919 sameAs 2979469919 @default.
- W2979469919 citedByCount "2" @default.
- W2979469919 countsByYear W29794699192020 @default.
- W2979469919 countsByYear W29794699192021 @default.
- W2979469919 crossrefType "book-chapter" @default.
- W2979469919 hasAuthorship W2979469919A5001959772 @default.
- W2979469919 hasAuthorship W2979469919A5023976830 @default.
- W2979469919 hasAuthorship W2979469919A5031290100 @default.
- W2979469919 hasAuthorship W2979469919A5039412958 @default.
- W2979469919 hasAuthorship W2979469919A5061423926 @default.
- W2979469919 hasAuthorship W2979469919A5061512571 @default.
- W2979469919 hasAuthorship W2979469919A5072003003 @default.
- W2979469919 hasConcept C108583219 @default.
- W2979469919 hasConcept C11413529 @default.
- W2979469919 hasConcept C121608353 @default.
- W2979469919 hasConcept C126322002 @default.
- W2979469919 hasConcept C126838900 @default.
- W2979469919 hasConcept C154945302 @default.
- W2979469919 hasConcept C173974348 @default.
- W2979469919 hasConcept C201645570 @default.
- W2979469919 hasConcept C2776235491 @default.
- W2979469919 hasConcept C2780192828 @default.
- W2979469919 hasConcept C31972630 @default.
- W2979469919 hasConcept C41008148 @default.
- W2979469919 hasConcept C509974204 @default.
- W2979469919 hasConcept C57493831 @default.
- W2979469919 hasConcept C71924100 @default.
- W2979469919 hasConceptScore W2979469919C108583219 @default.
- W2979469919 hasConceptScore W2979469919C11413529 @default.
- W2979469919 hasConceptScore W2979469919C121608353 @default.
- W2979469919 hasConceptScore W2979469919C126322002 @default.
- W2979469919 hasConceptScore W2979469919C126838900 @default.
- W2979469919 hasConceptScore W2979469919C154945302 @default.
- W2979469919 hasConceptScore W2979469919C173974348 @default.
- W2979469919 hasConceptScore W2979469919C201645570 @default.
- W2979469919 hasConceptScore W2979469919C2776235491 @default.
- W2979469919 hasConceptScore W2979469919C2780192828 @default.
- W2979469919 hasConceptScore W2979469919C31972630 @default.
- W2979469919 hasConceptScore W2979469919C41008148 @default.
- W2979469919 hasConceptScore W2979469919C509974204 @default.
- W2979469919 hasConceptScore W2979469919C57493831 @default.
- W2979469919 hasConceptScore W2979469919C71924100 @default.
- W2979469919 hasLocation W29794699191 @default.
- W2979469919 hasOpenAccess W2979469919 @default.
- W2979469919 hasPrimaryLocation W29794699191 @default.
- W2979469919 hasRelatedWork W2045578658 @default.
- W2979469919 hasRelatedWork W2081812371 @default.
- W2979469919 hasRelatedWork W2098469266 @default.
- W2979469919 hasRelatedWork W2132162251 @default.
- W2979469919 hasRelatedWork W2137723232 @default.
- W2979469919 hasRelatedWork W2137758199 @default.
- W2979469919 hasRelatedWork W2753061442 @default.
- W2979469919 hasRelatedWork W3032252569 @default.
- W2979469919 hasRelatedWork W3090382170 @default.
- W2979469919 hasRelatedWork W4235220060 @default.
- W2979469919 isParatext "false" @default.
- W2979469919 isRetracted "false" @default.
- W2979469919 magId "2979469919" @default.
- W2979469919 workType "book-chapter" @default.