Matches in SemOpenAlex for { <https://semopenalex.org/work/W29794711> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W29794711 abstract "Abstract The present paper describes a corpus-based singing voice syn-thesis system based on hidden Markov models (HMMs). Thissystem employs the HMM-based speech synthesis to synthesizesingingvoice. Musical information such aslyrics, tones, durationsis modeled simultaneously in a unified framework of the context-dependent HMM. It can mimic the voice quality and singing styleof the original singer. Results of a singing voice synthesis exper-iment show that the proposed system can synthesize smooth andnatural-sounding singing voice. Index Terms : singing voice synthesis, HMM, time-lag model. 1. Introduction In recent years, various applications of speech synthesis systemshave been proposed and investigated. Singing voice synthesis isone of the hot topics in this area [1–5]. However, only a fewcorpus-based singing voice synthesis systems which can be con-structed automatically have been proposed.Currently, there are two main paradigms in the corpus-basedspeech synthesis area: sample-based approach and statistical ap-proach. The sample-based approach such as unit selection [6]can synthesize high-quality speech. However, it requires a hugeamountoftrainingdatatorealizevariousvoicecharacteristics. Onthe other hand, the quality of statistical approach such as HMM-basedspeechsynthesis[7]isbuzzybecauseitisbasedonavocod-ingtechnique. However,itissmoothandstable,anditsvoicechar-acteristics can easily be modified by transforming HMM parame-ters appropriately. For singing voice synthesis, applying the unitselection seems to be difficult because a huge amount of singingspeech which covers vast combinations of contextual factors thataffect singing voice has to be recorded. On the other hand, theHMM-based system can be constructed using a relatively smallamount of training data. From this point of view, the HMM-basedapproach seems to be more suitable for the singing voice synthe-sizer. In the present paper, we apply the HMM-based synthesisapproach to singing voice synthesis.Although the singing voice synthesis system proposed in thepresent paper is quite similar to the HMM-based text-to-speechsynthesissystem[7],therearetwomaindifferencesbetweenthem.In the HMM-based text-to-speech synthesis system, contextualfactors which may affect reading speech (e.g. phonemes, sylla-bles, words, phrases, etc.) are taken into account. However, con-textual factors which may affect singing voice should be different" @default.
- W29794711 created "2016-06-24" @default.
- W29794711 creator A5003420204 @default.
- W29794711 creator A5008883354 @default.
- W29794711 creator A5023240652 @default.
- W29794711 creator A5035473671 @default.
- W29794711 creator A5050450986 @default.
- W29794711 date "2006-09-17" @default.
- W29794711 modified "2023-10-05" @default.
- W29794711 title "An HMM-based singing voice synthesis system" @default.
- W29794711 cites W1525613233 @default.
- W29794711 cites W1600722501 @default.
- W29794711 cites W182265564 @default.
- W29794711 cites W2093450784 @default.
- W29794711 cites W2096801154 @default.
- W29794711 cites W2096980176 @default.
- W29794711 cites W2150658333 @default.
- W29794711 cites W2154920538 @default.
- W29794711 doi "https://doi.org/10.21437/interspeech.2006-584" @default.
- W29794711 hasPublicationYear "2006" @default.
- W29794711 type Work @default.
- W29794711 sameAs 29794711 @default.
- W29794711 citedByCount "69" @default.
- W29794711 countsByYear W297947112012 @default.
- W29794711 countsByYear W297947112013 @default.
- W29794711 countsByYear W297947112014 @default.
- W29794711 countsByYear W297947112015 @default.
- W29794711 countsByYear W297947112016 @default.
- W29794711 countsByYear W297947112017 @default.
- W29794711 countsByYear W297947112018 @default.
- W29794711 countsByYear W297947112019 @default.
- W29794711 countsByYear W297947112020 @default.
- W29794711 countsByYear W297947112021 @default.
- W29794711 countsByYear W297947112022 @default.
- W29794711 countsByYear W297947112023 @default.
- W29794711 crossrefType "proceedings-article" @default.
- W29794711 hasAuthorship W29794711A5003420204 @default.
- W29794711 hasAuthorship W29794711A5008883354 @default.
- W29794711 hasAuthorship W29794711A5023240652 @default.
- W29794711 hasAuthorship W29794711A5035473671 @default.
- W29794711 hasAuthorship W29794711A5050450986 @default.
- W29794711 hasConcept C121332964 @default.
- W29794711 hasConcept C14999030 @default.
- W29794711 hasConcept C151730666 @default.
- W29794711 hasConcept C154945302 @default.
- W29794711 hasConcept C23224414 @default.
- W29794711 hasConcept C24890656 @default.
- W29794711 hasConcept C2779343474 @default.
- W29794711 hasConcept C28490314 @default.
- W29794711 hasConcept C41008148 @default.
- W29794711 hasConcept C44819458 @default.
- W29794711 hasConcept C86803240 @default.
- W29794711 hasConceptScore W29794711C121332964 @default.
- W29794711 hasConceptScore W29794711C14999030 @default.
- W29794711 hasConceptScore W29794711C151730666 @default.
- W29794711 hasConceptScore W29794711C154945302 @default.
- W29794711 hasConceptScore W29794711C23224414 @default.
- W29794711 hasConceptScore W29794711C24890656 @default.
- W29794711 hasConceptScore W29794711C2779343474 @default.
- W29794711 hasConceptScore W29794711C28490314 @default.
- W29794711 hasConceptScore W29794711C41008148 @default.
- W29794711 hasConceptScore W29794711C44819458 @default.
- W29794711 hasConceptScore W29794711C86803240 @default.
- W29794711 hasLocation W297947111 @default.
- W29794711 hasOpenAccess W29794711 @default.
- W29794711 hasPrimaryLocation W297947111 @default.
- W29794711 hasRelatedWork W1528909574 @default.
- W29794711 hasRelatedWork W2049367655 @default.
- W29794711 hasRelatedWork W2066598518 @default.
- W29794711 hasRelatedWork W2110108310 @default.
- W29794711 hasRelatedWork W2394528082 @default.
- W29794711 hasRelatedWork W2549780086 @default.
- W29794711 hasRelatedWork W2904846757 @default.
- W29794711 hasRelatedWork W29794711 @default.
- W29794711 hasRelatedWork W3133417262 @default.
- W29794711 hasRelatedWork W3207249698 @default.
- W29794711 isParatext "false" @default.
- W29794711 isRetracted "false" @default.
- W29794711 magId "29794711" @default.
- W29794711 workType "article" @default.