Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979490883> ?p ?o ?g. }
- W2979490883 abstract "Architecture, size, and shape of glands are most important patterns used by pathologists for assessment of cancer malignancy in prostate histopathological tissue slides. Varying structures of glands along with cumbersome manual observations may result in subjective and inconsistent assessment. Cribriform gland with irregular border is an important feature in Gleason pattern 4. We propose using deep neural networks for cribriform pattern classification in prostate histopathological images. $163708$ Hematoxylin and Eosin (H&E) stained images were extracted from histopathologic tissue slides of $19$ patients with prostate cancer and annotated for cribriform patterns. Our automated image classification system analyses the H&E images to classify them as either `Cribriform' or `Non-cribriform'. Our system uses various deep learning approaches and hand-crafted image pixel intensity-based features. We present our results for cribriform pattern detection across various parameters and configuration allowed by our system. The combination of fine-tuned deep learning models outperformed the state-of-art nuclei feature based methods. Our image classification system achieved the testing accuracy of $85.93~pm~7.54$ (cross-validated) and $88.04~pm~5.63$ ( additional unseen test set) across three folds. In this paper, we present an annotated cribriform dataset along with analysis of deep learning models and hand-crafted features for cribriform pattern detection in prostate histopathological images." @default.
- W2979490883 created "2019-10-18" @default.
- W2979490883 creator A5010092389 @default.
- W2979490883 creator A5017172380 @default.
- W2979490883 creator A5030355643 @default.
- W2979490883 creator A5032667101 @default.
- W2979490883 creator A5059780843 @default.
- W2979490883 creator A5062329504 @default.
- W2979490883 creator A5067773634 @default.
- W2979490883 creator A5068391079 @default.
- W2979490883 creator A5071542775 @default.
- W2979490883 creator A5072575542 @default.
- W2979490883 date "2019-10-09" @default.
- W2979490883 modified "2023-09-27" @default.
- W2979490883 title "Cribriform pattern detection in prostate histopathological images using deep learning models" @default.
- W2979490883 cites W1565838005 @default.
- W2979490883 cites W1686810756 @default.
- W2979490883 cites W1965680834 @default.
- W2979490883 cites W1977551372 @default.
- W2979490883 cites W1977653087 @default.
- W2979490883 cites W1982370645 @default.
- W2979490883 cites W1985357898 @default.
- W2979490883 cites W2014610851 @default.
- W2979490883 cites W2038264173 @default.
- W2979490883 cites W2062254183 @default.
- W2979490883 cites W2076099429 @default.
- W2979490883 cites W2082917222 @default.
- W2979490883 cites W2089580584 @default.
- W2979490883 cites W2092281468 @default.
- W2979490883 cites W2097117768 @default.
- W2979490883 cites W2107554012 @default.
- W2979490883 cites W2117539524 @default.
- W2979490883 cites W2119821739 @default.
- W2979490883 cites W2121947440 @default.
- W2979490883 cites W2123918450 @default.
- W2979490883 cites W2129412583 @default.
- W2979490883 cites W2139834519 @default.
- W2979490883 cites W2160738726 @default.
- W2979490883 cites W2168033859 @default.
- W2979490883 cites W2183341477 @default.
- W2979490883 cites W2194775991 @default.
- W2979490883 cites W2253429366 @default.
- W2979490883 cites W2271840356 @default.
- W2979490883 cites W2294284738 @default.
- W2979490883 cites W2302255633 @default.
- W2979490883 cites W2332913015 @default.
- W2979490883 cites W2345010043 @default.
- W2979490883 cites W2351736210 @default.
- W2979490883 cites W2401520370 @default.
- W2979490883 cites W2443266644 @default.
- W2979490883 cites W2470965540 @default.
- W2979490883 cites W2511666991 @default.
- W2979490883 cites W2560879631 @default.
- W2979490883 cites W2589834252 @default.
- W2979490883 cites W2591740120 @default.
- W2979490883 cites W2592929672 @default.
- W2979490883 cites W2593429971 @default.
- W2979490883 cites W2615638368 @default.
- W2979490883 cites W2620578070 @default.
- W2979490883 cites W2624699030 @default.
- W2979490883 cites W2668608389 @default.
- W2979490883 cites W2753867498 @default.
- W2979490883 cites W2760946358 @default.
- W2979490883 cites W2808210572 @default.
- W2979490883 cites W2883567318 @default.
- W2979490883 cites W2921020016 @default.
- W2979490883 cites W2921197949 @default.
- W2979490883 cites W2921295405 @default.
- W2979490883 cites W2928842276 @default.
- W2979490883 cites W2933939325 @default.
- W2979490883 cites W2935931946 @default.
- W2979490883 cites W2945626616 @default.
- W2979490883 cites W2945839551 @default.
- W2979490883 cites W2946122943 @default.
- W2979490883 cites W2948930564 @default.
- W2979490883 cites W2963446712 @default.
- W2979490883 cites W2963542991 @default.
- W2979490883 cites W3118608800 @default.
- W2979490883 hasPublicationYear "2019" @default.
- W2979490883 type Work @default.
- W2979490883 sameAs 2979490883 @default.
- W2979490883 citedByCount "0" @default.
- W2979490883 crossrefType "posted-content" @default.
- W2979490883 hasAuthorship W2979490883A5010092389 @default.
- W2979490883 hasAuthorship W2979490883A5017172380 @default.
- W2979490883 hasAuthorship W2979490883A5030355643 @default.
- W2979490883 hasAuthorship W2979490883A5032667101 @default.
- W2979490883 hasAuthorship W2979490883A5059780843 @default.
- W2979490883 hasAuthorship W2979490883A5062329504 @default.
- W2979490883 hasAuthorship W2979490883A5067773634 @default.
- W2979490883 hasAuthorship W2979490883A5068391079 @default.
- W2979490883 hasAuthorship W2979490883A5071542775 @default.
- W2979490883 hasAuthorship W2979490883A5072575542 @default.
- W2979490883 hasConcept C108583219 @default.
- W2979490883 hasConcept C121608353 @default.
- W2979490883 hasConcept C126322002 @default.
- W2979490883 hasConcept C138885662 @default.
- W2979490883 hasConcept C142724271 @default.
- W2979490883 hasConcept C153180895 @default.
- W2979490883 hasConcept C154945302 @default.